Let $R$ be a Factorization domain (https://en.m.wikipedia.org/wiki/Atomic_domain ) which is local and with principal maximal ideal. Then is $R$ a Bezout domain i.e. every finitely generated ideal is principal ? Or equivalently (since $R$ is local), is $R$ a valuation domain ( https://en.m.wikipedia.org/wiki/Valuation_ring) i.e. given any non-zero $a,b \in R$, either $a|b$ or $b|a$ ? Since factorization domain which are Bezout are exactly PID, and local PID is a DVR, so equivalently we ask : is $R$ a DVR ?
2026-02-22 23:36:15.1771803375
Local, factorization domain with principal maximal ideal is a PID?
305 Views Asked by user495643 https://math.techqa.club/user/user495643/detail At
1
There are 1 best solutions below
Related Questions in COMMUTATIVE-ALGEBRA
- Jacobson radical = nilradical iff every open set of $\text{Spec}A$ contains a closed point.
- Extending a linear action to monomials of higher degree
- Tensor product commutes with infinite products
- Example of simple modules
- Describe explicitly a minimal free resolution
- Ideals of $k[[x,y]]$
- $k[[x,y]]/I$ is a Gorenstein ring implies that $I$ is generated by 2 elements
- There is no ring map $\mathbb C[x] \to \mathbb C[x]$ swapping the prime ideals $(x-1)$ and $(x)$
- Inclusions in tensor products
- Principal Ideal Ring which is not Integral
Related Questions in MAXIMAL-AND-PRIME-IDEALS
- Prime Ideals in Subrings
- If $P$ is a prime ideal of $R[x;\delta]$ such as $P\cap R=\{0\}$, is $P(Q[x;\delta])$ also prime?
- Prime ideals of $\Bbb C[X, Y]$.
- The radical of the algebra $ A = T_n(F)$ is $N$, the set of all strictly upper triangular matrices.
- Primary decomposition in a finite algebra
- Spectrum of $\mathbb{Z}[\frac{1}{6}]$
- Does $\mathbb Z/{2}\times\mathbb Z/{2}$ have no maximal and prime ideal?
- characterizing commutative rings, with nilpotent nilradical , satisfying a.c.c. on radical ideals
- Maximal and prime ideal in an artinian ring
- ring satisfying a.c.c. on radical ideals, with nilpotent nilradical and every prime ideal maximal
Related Questions in VALUATION-THEORY
- Does every valuation ring arise out of a valuation?
- Calculating the residue field of $\mathbb{F}_q(t)$ with respect to the valuation $-\deg$
- Different discrete valuation rings inside the same fraction field
- Extensions of maximally complete fields
- State Price Density Integration - Related to Ito's lemma
- Valuation on the field of rational functions
- Is every algebraically closed subfield of $\mathbb C[[X]]$ contained in $\mathbb C$?
- Working out an inequality in the proof of Ostrowski's Theorem
- The image of a valuation is dense in $\mathbb{R}$
- Kernel of the map $D^2+aD+b : k[[X]] \to k[[X]]$ , where $D :k[[X]] \to k[[X]]$ is the usual derivative map
Related Questions in LOCAL-RINGS
- Noetherian local domain of dimension one
- Hom and tensor in local Ring
- Injective map from a module of finite rank to free module
- Rank of completion of a module
- Given a prime ideal $P$ in a valuation ring $A$, there is a valuation ring $B$ containing $A$ such that $B/PB$ is the fraction field of $A/P$ ?
- Commutative Noetherian, local, reduced ring has only one minimal prime ideal?
- Galois Theory for Finite Local Commutative Rings
- Complete rings with respect to an I-adic topology
- Statement of Lech's lemma
- Difference between two localizations
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Suppose $R$ isn't a field. If $M$ is the maximal ideal and $M=(p)$, then $p$ is the only irreducible element. For suppose $q$ was another irreducible: then $q=pr$ implies $r$ is a unit, so that $p$ is associate to $q$.
Moreover, $p$ is prime since $R/M$ is a field. Thus you are talking about an atomic domain in which all irreducibles are prime, a.k.a. a UFD. (You probably don't even need this step but it's worth mentioning.)
Everything uniquely factors into the form $p^nu$ where $n\in\mathbb N$ and $u$ is a unit. This implies the principal ideals are linearly ordered, and it is easy to show this implies all ideals are linearly ordered.
So yes, it is a valuation ring.