Let $u$ and $v$ be an $n \times 1$ and $m \times 1$ unit norm (L-2 norm) vectors, respectively.
Let us define matrix $M$ (of dimension $n \times m$) as the kronecker product of $u$ and $v^*$ $$M= u \otimes v^*,$$ where $v^*$ denotes the conjugate transpose of $v$.
My question: can we claim that the resulting matrix $M$ is of unit norm ?
Update:
P.S.: I saw this result in a paper where they don't precise which norm is used for the matrix.
\begin{align} ||u\otimes v^*||_{op} &= \sup_{||x||_2\leq 1} ||(u\otimes v^*)(x)||_2\\ &= \sup_{||x||_2 \leq 1} ||\langle x, v \rangle u||_{2} \\ &= \sup_{||x||_2 \leq 1} |\langle x, v \rangle |. ||u||_{2}\\ &= ||u||_2. \sup_{||x||_2 \leq 1} |\langle x, v \rangle |\\ &= ||u||_2 .||v||_2 \;\;\;\;\text{(By Cauchy Schwarz)} \end{align}