I recently read the method for finding the number of entries that are not divisible by x(is a prime) in the nth row of Pascal's triangle. Similarly how to find number of entries not divisible by x(is a prime) in the nth row of triangle formed by the Stirling numbers of the second kind?
2026-02-22 23:29:52.1771802992
Number of entries are not divisible by x in the n th row of triangle
102 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtRelated Questions in NUMBER-THEORY
- Maximum number of guaranteed coins to get in a "30 coins in 3 boxes" puzzle
- Interesting number theoretical game
- Show that $(x,y,z)$ is a primitive Pythagorean triple then either $x$ or $y$ is divisible by $3$.
- About polynomial value being perfect power.
- Name of Theorem for Coloring of $\{1, \dots, n\}$
- Reciprocal-totient function, in term of the totient function?
- What is the smallest integer $N>2$, such that $x^5+y^5 = N$ has a rational solution?
- Integer from base 10 to base 2
- How do I show that any natural number of this expression is a natural linear combination?
- Counting the number of solutions of the congruence $x^k\equiv h$ (mod q)
Related Questions in PRIME-NUMBERS
- New prime number
- Confirmation of Proof: $\forall n \in \mathbb{N}, \ \pi (n) \geqslant \frac{\log n}{2\log 2}$
- How do I prove this question involving primes?
- What exactly is the definition of Carmichael numbers?
- I'm having a problem interpreting and starting this problem with primes.
- Decimal expansion of $\frac{1}{p}$: what is its period?
- Multiplying prime numbers
- Find the number of relatively prime numbers from $10$ to $100$
- A congruence with the Euler's totient function and sum of divisors function
- Squares of two coprime numbers
Related Questions in DIVISIBILITY
- Reciprocal-totient function, in term of the totient function?
- Can we find integers $x$ and $y$ such that $f,g,h$ are strictely positive integers
- Positive Integer values of a fraction
- Reciprocal divisibility of equally valued polynomials over a field
- Which sets of base 10 digits have the property that, for every $n$, there is a $n$-digit number made up of these digits that is divisible by $5^n$?
- For which natural numbers are $\phi(n)=2$?
- Interesting property about finite products of $111..1$'s
- Turn polynomial into another form by using synthetic division
- Fractions of the form $\frac{a}{k}\cdot\frac{b}{k}\cdot\frac{c}{k}\cdots=\frac{n}{k}$
- Proof: If $7\mid 4a$, then $7\mid a$
Related Questions in STIRLING-NUMBERS
- About the corvergence of series involving Stirling numbers of first kind and number theoretic functions
- Algebraic derivation of the recurrence for Stirling numbers of the second kind
- A sum involving Stirling numbers of the second kind.
- Number of entries are not divisible by x in the n th row of triangle
- odd property of Eulerian numbers
- General form of the coefficients of the polynomial $p(z)=\binom{q+z}{n}+\binom{q-z}{n}$
- Combinatorial proof for a Stirling identity
- How can I find $f(a,b,c)=e^{-c^a/a}\sum\limits_{n=0}^{\infty}\left(\frac{c^a}{a}\right)^{n}\frac{(an)^{b}}{n!}$?
- Asymptotic formula for the integral sequence s(n)
- Is this a convergent sequence : $ n \sin (a e n!)$ with $a$ is a real number?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?