I would be surprised if the following was true: $\lim_n \sin (a e n!)$ exists where $a$ is a real number. Really, Wolfram Alpha assumed that it is divergent for some values of the real number $a$, but in my opinion, when we use Stirling's formula and substitute $n !$ by $\sqrt{2\pi n}\frac{n^n}{e^n }$, we probably get something convergent in the $\sin$ function using the continuity of the $\sin$ function. Therefore my question: Is this a convergent sequence: $n \sin (a e n!)$ where $a$ is a real number?
2026-02-22 23:28:13.1771802893
Is this a convergent sequence : $ n \sin (a e n!)$ with $a$ is a real number?
56 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in TRIGONOMETRY
- Is there a trigonometric identity that implies the Riemann Hypothesis?
- Finding the value of cot 142.5°
- Using trigonometric identities to simply the following expression $\tan\frac{\pi}{5} + 2\tan\frac{2\pi}{5}+ 4\cot\frac{4\pi}{5}=\cot\frac{\pi}{5}$
- Derive the conditions $xy<1$ for $\tan^{-1}x+\tan^{-1}y=\tan^{-1}\frac{x+y}{1-xy}$ and $xy>-1$ for $\tan^{-1}x-\tan^{-1}y=\tan^{-1}\frac{x-y}{1+xy}$
- Sine of the sum of two solutions of $a\cos\theta + b \sin\theta = c$
- Tan of difference of two angles given as sum of sines and cosines
- Limit of $\sqrt x \sin(1/x)$ where $x$ approaches positive infinity
- $\int \ x\sqrt{1-x^2}\,dx$, by the substitution $x= \cos t$
- Why are extraneous solutions created here?
- I cannot solve this simple looking trigonometric question
Related Questions in CONVERGENCE-DIVERGENCE
- Finding radius of convergence $\sum _{n=0}^{}(2+(-1)^n)^nz^n$
- Conditions for the convergence of :$\cos\left( \sum_{n\geq0}{a_n}x^n\right)$
- Proving whether function-series $f_n(x) = \frac{(-1)^nx}n$
- Pointwise and uniform convergence of function series $f_n = x^n$
- studying the convergence of a series:
- Convergence in measure preserves measurability
- If $a_{1}>2$and $a_{n+1}=a_{n}^{2}-2$ then Find $\sum_{n=1}^{\infty}$ $\frac{1}{a_{1}a_{2}......a_{n}}$
- Convergence radius of power series can be derived from root and ratio test.
- Does this sequence converge? And if so to what?
- Seeking an example of Schwartz function $f$ such that $ \int_{\bf R}\left|\frac{f(x-y)}{y}\right|\ dy=\infty$
Related Questions in STIRLING-NUMBERS
- About the corvergence of series involving Stirling numbers of first kind and number theoretic functions
- Algebraic derivation of the recurrence for Stirling numbers of the second kind
- A sum involving Stirling numbers of the second kind.
- Number of entries are not divisible by x in the n th row of triangle
- odd property of Eulerian numbers
- General form of the coefficients of the polynomial $p(z)=\binom{q+z}{n}+\binom{q-z}{n}$
- Combinatorial proof for a Stirling identity
- How can I find $f(a,b,c)=e^{-c^a/a}\sum\limits_{n=0}^{\infty}\left(\frac{c^a}{a}\right)^{n}\frac{(an)^{b}}{n!}$?
- Asymptotic formula for the integral sequence s(n)
- Is this a convergent sequence : $ n \sin (a e n!)$ with $a$ is a real number?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Stirling's formula has little to do with the convergence (or lack of) of such sequences, the relevant fact is that $n!e$ is always pretty close to an integer since $$ n!e = \underbrace{\sum_{k=0}^{n}\frac{n!}{k!}}_{\in\mathbb{Z}}+\underbrace{\sum_{k>n}\frac{n!}{k!}}_{\approx\frac{1}{n+1}} $$ hence $\sin(\pi n! e)\to 0$, for instance, and $n\sin(\pi n! e)$ has a subsequence converging to $\pi$ and a subsequence convergent to $-\pi$.