It is known that for $ x \in (0,\pi] $ $$ -\log\left(2\sin\left(\frac{x}{2}\right)\right) = \sum_{n=1}^{\infty}\frac{\cos(x n)}{n}. $$ I was wondering on what the rate of the convergence of the series is, i.e. if we let $$ S_N(x) := \sum_{n=1}^{N}\frac{\cos(x n)}{n}, $$ what is the order of convergence of the series $ S_N $ to its limit as $ N \to \infty $. How could one find a representation $$ S_N(x) = -\log\left(2\sin\left(\frac{x}{2}\right)\right) + \mathcal{O}(g(N)),$$ for some function $ g $ that is to be determined; or equivalently $$ \left|S_N(x) + \log\left(2\sin\left(\frac{x}{2}\right)\right)\right| \leq C g(N), $$ for some constant $ C > 0 $.
2025-01-12 23:30:12.1736724612
Order of convergence of series
90 Views Asked by spaceman https://math.techqa.club/user/spaceman/detail At
1
There are 1 best solutions below
Related Questions in REAL-ANALYSIS
- Proving whether the limit of a sequence will always converge to 0?
- Limit of $(5n^2+2n)/(n^2-3)$ using limit definition
- If $\inf f = f(a)$, then $\exists b,c$, $f(b) = f(c)$
- Trying to prove if $S$ is a subset of $R$, every adherent point to $S$ is the limit of a sequence in $S$
- ODE existence of specific solutions
- equivalent definitions of weak topology on a topological vector space
- Bounded derivative implies uniform continuity on an open interval
- Inf and Sup question
- how to prove sup(A) where A={(n+1)/n|n∈N}?
- how to use epsilion-delta limit definition to answer the following question?
Related Questions in SEQUENCES-AND-SERIES
- Series to infinity
- Proving whether the limit of a sequence will always converge to 0?
- How come pi is in this question?
- finding limit equation of a convergent sequence (vn) in math exercise
- Convergence of difference of series
- Proof using triangle inequality
- sum of digits = sum of factors
- My incorrect approach solving this limit. What am I missing?
- Using the Monotone Convergence Theorem to prove convergence of a recursively defined sequence.
- Difference of Riemann sums
Related Questions in CONVERGENCE-DIVERGENCE
- Proving whether the limit of a sequence will always converge to 0?
- If I take pre-images of an increasing subset of the image, do their measures converge to that of the range?
- Derivative of power series
- Derivative of power series with nonnegative coefficients
- Convergence in probability of random probability measures
- Show that $\sum_{j=1}^{\infty}\frac{\sqrt{j+1}-\sqrt{j}}{j+1}$ is convergent or divergent.
- Proof of Simple Limit Theorem
- If $\sum_{n=1}^\infty a_n$ converges, prove that $\lim_{n\to \infty} (1/n) \sum_{k=1}^n ka_k = 0$.
- Radius Of Convergence of the series
- $\sum_{j=3}^\infty \frac{1}{j(\log(j))^3}$ converges or diverges?
Related Questions in TRIGONOMETRIC-SERIES
- Solving a question on trigonometric series
- Answer to some trigonometry series
- Find $n$ such that $\tan 1$ and its Taylor series up to $n$ agree to 1000 decimal places
- Prove convergence of $\int^{\infty}_{0}\ t^{z-1}cos(t)dt$ and $\int^{\infty}_{0}\ t^{z-1}sin(t)dt$
- $\sum_{n=0}^{\infty} \sin (nx) = \cot(x/2)$?
- Find the limit of $\lim_{j\rightarrow \infty}\sin^2(2^{j-1}\pi f)\prod_{i=0}^{j-2} \cos^2(2^i\pi f)$
- Infinite sum of cosine function
- prove that $\sum_{k=1}^{n}{\sin(kA)}$
- On $\sum a^n \tan(n\theta)$
- Convergence of a sine series
Related Questions in SUMMATION-BY-PARTS
- Summation by parts interpretation
- Finding an upper bound using summation by parts
- a question on Bernoulli function in the book of Tenenbaum
- Summation with fractions, discrete calculus
- Rearrange a Triple Summation with constraints
- Proof of Expected value by Abel's Summation
- Double Summation indexes problem
- Evaluating $\int_0^n \{x^2\}\,\text{d}x$
- Complex Summation Notation Question
- How to show $\sum_{k=1}^\infty\sum_{n=1}^\infty\frac{H_{n-1}}{n^2(n+k)^2}=\sum_{n=1}^\infty\frac{H_{n-1}^{(2)}}{n^3}$ using series manipulation?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Refuting the Anti-Cantor Cranks
- Find $E[XY|Y+Z=1 ]$
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- What are the Implications of having VΩ as a model for a theory?
- How do we know that the number $1$ is not equal to the number $-1$?
- Defining a Galois Field based on primitive element versus polynomial?
- Is computer science a branch of mathematics?
- Can't find the relationship between two columns of numbers. Please Help
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- A community project: prove (or disprove) that $\sum_{n\geq 1}\frac{\sin(2^n)}{n}$ is convergent
- Alternative way of expressing a quantied statement with "Some"
Popular # Hahtags
real-analysis
calculus
linear-algebra
probability
abstract-algebra
integration
sequences-and-series
combinatorics
general-topology
matrices
functional-analysis
complex-analysis
geometry
group-theory
algebra-precalculus
probability-theory
ordinary-differential-equations
limits
analysis
number-theory
measure-theory
elementary-number-theory
statistics
multivariable-calculus
functions
derivatives
discrete-mathematics
differential-geometry
inequality
trigonometry
Popular Questions
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- How to find mean and median from histogram
- Difference between "≈", "≃", and "≅"
- Easy way of memorizing values of sine, cosine, and tangent
- How to calculate the intersection of two planes?
- What does "∈" mean?
- If you roll a fair six sided die twice, what's the probability that you get the same number both times?
- Probability of getting exactly 2 heads in 3 coins tossed with order not important?
- Fourier transform for dummies
- Limit of $(1+ x/n)^n$ when $n$ tends to infinity
Note that $$S_{M,N}(x)=\sum_{n=N}^{M}\cos(x n), \quad M \ge N$$ satisfies
$$|S_{M,N}(x)| \le \frac{C}{x}, \quad 0<x\le \pi$$ for some absolute constant $C > 0$ since $$S_{N,0}(x)=\frac{\sin ((N+1)x/2)}{\sin (x/2)}\Re e^{iNx/2} \quad \text{and} \quad \sin (x/2) \ge \frac{x}{\pi}, \quad 0 \le x \le \pi,$$ while $$|S_{M,N}(x)| \le |S_{M,0}(x)|+|S_{N-1,0}(x)|.$$
Now $$\left|S_N(x) + \log\left(2\sin\left(\frac{x}{2}\right)\right)\right|=\left|\sum_{n=N+1}^{\infty}\frac{\cos(x n)}{n}\right|,$$ therefore, it is enough to show that $$\left|\sum_{n=N+1}^{M}\frac{\cos(x n)}{n}\right| \le \frac{C}{Nx}$$ for some constant $C > 0$ and $M > N$ arbitrary, and we are done by letting $M \to \infty$.
By summation by parts, we have that $$\sum_{n=N+1}^{M}\frac{\cos(x n)}{n}=\sum_{p=N+1}^{M-1}S_{p,1}(x)\left(\frac{1}{p}-\frac{1}{p+1}\right) + \frac{S_{M,1}(x)}{M} - \frac{S_{N,1}(x)}{N+1}.$$ Then, using the bound obtained above for $S_{M,N}$ \begin{align} \left|\sum_{n=N+1}^{M}\frac{\cos(x n)}{n}\right| &\leq \left|\sum_{p=N+1}^{M-1}S_{p,1}(x)\left(\frac{1}{p}-\frac{1}{p+1}\right)\right| + \frac{|S_{M,1}(x)|}{M} + \frac{|S_{N,1}(x)|}{N+1} \\ &\leq \frac{C}{Mx} + \frac{C}{(N+1)x} + \sup_{p}|S_{p,1}(x)|\sum_{p=N+1}^{M-1}\left(\frac{1}{p} - \frac{1}{p+1}\right) \\ &= \frac{2C}{(N+1)x} \leq \frac{C'}{Nx}, \end{align} for some constant $C' > 0$. Therefore, we are done!