I get this statment from paper "Cone metric spaces and fixed point theorems of contractive mappings Huang Long-Guang, Zhang Xian", i failed to understand why there is a guarantee that we can choose an interior point, given $\epsilon >0$ such that $\|c\|<\epsilon / K$, where $K$ is the normal constant.
2026-02-22 20:15:55.1771791355
P normal cone of a cone metric space, given $\epsilon > 0$, can we choose c interior point of P ($c \gg 0$) s.t $\|c\| < \epsilon/K$
79 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in REAL-ANALYSIS
- how is my proof on equinumerous sets
- Finding radius of convergence $\sum _{n=0}^{}(2+(-1)^n)^nz^n$
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Justify an approximation of $\sum_{n=1}^\infty G_n/\binom{\frac{n}{2}+\frac{1}{2}}{\frac{n}{2}}$, where $G_n$ denotes the Gregory coefficients
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Is this relating to continuous functions conjecture correct?
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Absolutely continuous functions are dense in $L^1$
- A particular exercise on convergence of recursive sequence
Related Questions in FUNCTIONAL-ANALYSIS
- Why is necessary ask $F$ to be infinite in order to obtain: $ f(v)=0$ for all $ f\in V^* \implies v=0 $
- Prove or disprove the following inequality
- Unbounded linear operator, projection from graph not open
- $\| (I-T)^{-1}|_{\ker(I-T)^\perp} \| \geq 1$ for all compact operator $T$ in an infinite dimensional Hilbert space
- Elementary question on continuity and locally square integrability of a function
- Bijection between $\Delta(A)$ and $\mathrm{Max}(A)$
- Exercise 1.105 of Megginson's "An Introduction to Banach Space Theory"
- Reference request for a lemma on the expected value of Hermitian polynomials of Gaussian random variables.
- If $A$ generates the $C_0$-semigroup $\{T_t;t\ge0\}$, then $Au=f \Rightarrow u=-\int_0^\infty T_t f dt$?
- Two Applications of Schwarz Inequality
Related Questions in NORMED-SPACES
- How to prove the following equality with matrix norm?
- Closure and Subsets of Normed Vector Spaces
- Exercise 1.105 of Megginson's "An Introduction to Banach Space Theory"
- derive the expectation of exponential function $e^{-\left\Vert \mathbf{x} - V\mathbf{x}+\mathbf{a}\right\Vert^2}$ or its upper bound
- Minimum of the 2-norm
- Show that $\Phi$ is a contraction with a maximum norm.
- Understanding the essential range
- Mean value theorem for functions from $\mathbb R^n \to \mathbb R^n$
- Metric on a linear space is induced by norm if and only if the metric is homogeneous and translation invariant
- Gradient of integral of vector norm
Related Questions in CONVEX-CONE
- Sufficient condition for strict minimality in infinite-dimensional spaces
- On finding a linear independent subset of vectors to describe a vector in a cone
- Convex cone necessary and sufficient condition
- How to get explicit form of polar cone?
- Different forms of primal-dual second-order cone programs
- SOCP to SDP — geometry and intuition
- How to calculate set of equation of all the line in 3d, when a point on the line and angle between the line to find and a given line is provided?
- Pointed Norm Cone?
- Second-order cone constraints
- Closure of intersection of cone and affine space
Related Questions in DUAL-CONE
- Different forms of primal-dual second-order cone programs
- KKT conditions for general conic optimization problem
- How to prove that the dual of any set is a closed convex cone?
- P normal cone of a cone metric space, given $\epsilon > 0$, can we choose c interior point of P ($c \gg 0$) s.t $\|c\| < \epsilon/K$
- What is the graph of a hyperbola where the two cones are split through the middle?
- Calculating the dual of a conic problem
- Dual of epigraph-type cones
- Linear image of a dual cone
- Dual of the relative entropy cone
- The dual of a regular polyhedral cone is regular
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
On page 1469, it says that it is assumed that $P$ is a cone with non-empty interior. Therefore there is some $c_1$ in the interior $P$. But then $ac_1$ is also in the interior of $P$ for any $a > 0$. Hence setting $c=ac_1$ and choosing $a$ sufficiently small will satisfy the requirements.