I've been trying to transform the following formula all day long with no avail:
$\lnot[\forall x \exists y F(u,x,y) \to \exists x (\lnot \forall y G(y,v) \to H(x))]$
the answer sheet gives us the solution but not the steps, here it is:
∀x∃y∃z[F(u, x, y) ∧ ¬G(z, v) ∧ ¬H(x))]
I can't seem to find a way to properly reach that conclusion. I'll transcribe one of my tries in painstaking detail and I'd be immensely grateful if someone could point out where I made a mistake:
1) $\lnot[\forall x \exists y F(u,x,y) \to \exists x (\lnot \forall y G(y,v) \to H(x))]$
2) $\lnot[\lnot \forall x \exists y F(u,x,y) \lor \exists x (\lnot \forall y G(y,v) \to H(x))]$
3) $\lnot[\exists x \forall y \lnot F(u,x,y) \lor \exists x (\lnot \forall y G(y,v) \to H(x))]$
4) $\lnot[\exists x \forall y \lnot F(u,x,y) \lor \exists x (\lnot \lnot \forall y G(y,v) \lor H(x))]$
5) $\lnot[\exists x \forall y \lnot F(u,x,y) \lor \exists x (\forall y G(y,v) \lor H(x))]$
6) $\lnot\exists x \forall y \lnot F(u,x,y) \land \lnot \exists x (\forall y G(y,v) \lor H(x))$
7) $\forall x \exists y F(u,x,y) \land \lnot \exists x (\forall y G(y,v) \lor H(x))$
8) $\forall x \exists y F(u,x,y) \land \forall x \lnot (\forall y G(y,v) \lor H(x))$
9) $\forall x \exists y F(u,x,y) \land \forall x \lnot \forall y G(y,v) \land H(x))$
10) $\forall x \exists y F(u,x,y) \land \forall x \exists y G(y,v) \land H(x))$
After this I simply gave up because I saw that no matter how I distributed the quantifier I wouldn't be able to reach the provided answer.
You should have the following. Check for where you dropped negation (9-10).
Now the universal distributes over conjunction: $(\forall a~\phi)\land(\forall a~\psi)\iff (\forall a~(\phi\land \psi))$
However Existential does not; therefore we must use alpha substitution in one of the two existentials. Substituting in the second will lead to the target.
You can there by use that $\psi\land(\exists a~\phi)\equiv \exists a~(\psi\land\phi)$ if $a$ is not free in $\psi$ (and the universe is not-empty).