Is it possible to rephrase every proof which uses first-order logic into a proof which uses satisfiability modulo theories? In other words, can a program which automatically solves SMT questions solve every first-order proof based on decidable theories as well?
2026-02-22 23:28:17.1771802897
Can any 1st-order proof be expressed with an SMT?
57 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in LOGIC
- Theorems in MK would imply theorems in ZFC
- What is (mathematically) minimal computer architecture to run any software
- What formula proved in MK or Godel Incompleteness theorem
- Determine the truth value and validity of the propositions given
- Is this a commonly known paradox?
- Help with Propositional Logic Proof
- Symbol for assignment of a truth-value?
- Find the truth value of... empty set?
- Do I need the axiom of choice to prove this statement?
- Prove that any truth function $f$ can be represented by a formula $φ$ in cnf by negating a formula in dnf
Related Questions in FIRST-ORDER-LOGIC
- Proving the schema of separation from replacement
- Find the truth value of... empty set?
- Exchanging RAA with double negation: is this valid?
- Translate into first order logic: "$a, b, c$ are the lengths of the sides of a triangle"
- Primitive recursive functions of bounded sum
- Show formula which does not have quantifier elimination in theory of infinite equivalence relations.
- Logical Connectives and Quantifiers
- Is this proof correct? (Proof Theory)
- Is there only a finite number of non-equivalent formulas in the predicate logic?
- How to build a list of all the wfs (well-formed sentences)?
Related Questions in SATISFIABILITY
- How to prove that 3-CNF is satisfiable using Hall's marriage theorem?
- validity reduction between FOL fragments
- Reduction 3SAT to Subset Sum
- Is $\forall_x\forall_y\forall_z\Big(P(x,x)\wedge(P(x,z)\implies\big(P(x,y)\vee P(y,z)\big)\Big)\implies\exists_x\forall_y P(x,y)$ tautology?
- How to I correctly specify the following set of sets of edges of a graph
- First Order Logic - unsatisfiable set of formulas
- First Order Logic - Logical Consequence and Paradox
- Divide and conquer SAT Solver
- Integer Programming (non $0-1$) Reduction to show $NP$ Completeness
- Induction on formulas for substitution
Related Questions in AUTOMATED-THEOREM-PROVING
- Automated proof verification of metalogical theorems of first order logic
- Why is there not a system for computer checking mathematical proofs yet (2018)?
- Should $\to$-elimination always have precedence over $\lnot$-elimination when transforming formulas to Prenex CNF?
- Problem with transforming a formula to Prenex CNF
- Transforming a formula into clausal form
- Who to define the meta-function using induction prinicple?
- Can all classical math proofs be represented in type theory?
- Curry-Howard for an imperative programming language?
- Are "Discovery Systems" still not viable in mathematics?
- Can any 1st-order proof be expressed with an SMT?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
It's slightly unclear to me what you're asking here, but I believe it's the following:
Note that by Craig's trick, the c.e. axiomatizable theories are exactly the computably axiomatizable theories.
The answer depends on exactly what "reducible" means in this case. There are two natural notions here: many-one and Turing. The first says "no" and the second says "yes."
Specifically, the key fact is this:
The transformation $p\mapsto \neg p$ is clearly computable, so the only potential issue is whether the switch from "is in" to "is not in" - that is, whether we're allowed to exchange positive $Sat$-information for negative $Prove$-information. Turing reductions do allow this, while many-one reductions don't.
(Strictly speaking, the statement above just shows that the map $p\mapsto\neg p$ doesn't yield a many-one reduction, and doesn't rule out the possibility of a non-obvious many-one reduction between $Sat$ and $Prove$. But we can indeed prove that none exists - this follows e.g. from the fact that $Prove$ is c.e. but not computable.)