This is a simplified case of something I'm trying to prove.
Suppose that $N,h$ are even. I want to show that $$ \sum_{k=1}^{(N-h)/2} \frac{2^{2k}}{kN^{\underline{2k}}}\left(\frac{N}{2}\right)^{\underline{k}}\left(\frac{N-h}{2}\right)^{\underline{k}} = \sum_{j=1}^{(N-h)/2} \frac{2}{2j+h-1} $$ where $n^{\underline{k}} = n(n-1)...(n-k+1)$ is the falling factorial. Now the LHS terms can be written as follows
\begin{align} \frac{2^{2k}}{kN^{\underline{2k}}}\left(\frac{N}{2}\right)^{\underline{k}}\left(\frac{N-h}{2}\right)^{\underline{k}} &= \frac{1}{kN^{\underline{2k}}} \prod_{j=0}^{k-1} (N-2j)(N-h-2j) \\&= \frac{1}{k} \prod_{j=0}^{k-1} \frac{N-h-2j}{N-2j-1} \\&= \frac{1}{k} \prod_{j=0}^{k-1} \left(1-\frac{h-1}{N-2j-1}\right). \end{align} Note the RHS can be written as $H_{\frac{N}{2}-\frac{1}{2}}-H_{\frac{h}{2}-\frac{1}{2}}$ where $H_n$ is the Harmonic number.
Since you've already got $$\frac{2^{2k}}{kN^{\underline{2k}}}\left(\frac{N}{2}\right)^{\underline{k}}\left(\frac{N-h}{2}\right)^{\underline{k}}= \frac{1}{k} \prod_{j=0}^{k-1} \frac{N-h-2j}{N-2j-1}$$
let us prove by induction on $m$ where $N=h+2m$ that $$\sum_{j=1}^{m} \frac{2}{2j+h-1}=\sum_{k=1}^{m} \frac{1}{k} \prod_{j=0}^{k-1} \frac{2m-2j}{h+2m-2j-1} \tag1$$
For $m=1$, $(1)$ holds since the both sides of $(1)$ equal $\frac{2}{h+1}$.
Suppose that $(1)$ holds for some $m\ (\ge 1)$.
Then, $$\small\begin{align}&\sum_{j=1}^{m+1} \frac{2}{2j+h-1}\\\\&\stackrel{I.H.} =\frac{2}{2(m+1)+h-1}+\sum_{k=1}^{m} \frac{1}{k}\cdot \underbrace{\prod_{j=0}^{k-1} \frac{2m-2j}{h+2m-2j-1}}_{A} \\\\&=\frac{2}{h+2m+1}+\sum_{k=1}^{m} \frac 1k\cdot\underbrace{\frac{(h+2m+1)(2m+2-2k)}{(2m+2)(h+2m-2k+1)}\prod_{j=0}^{k-1} \frac{2(m+1)-2j}{h+2(m+1)-2j-1} }_{A} \\\\&=\frac{2}{h+2m+1}+\sum_{k=1}^{m} \frac 1k\cdot \underbrace{\frac{(h+2m+1)(2m+2-2k)}{(2m+2)(h+2m-2k+1)}}_{B}\prod_{j=0}^{k-1} \frac{2(m+1)-2j}{h+2(m+1)-2j-1} \\\\&=\frac{2}{h+2m+1}+\sum_{k=1}^{m}\frac 1k\cdot\underbrace{\left(1-\frac{k(h-1)}{(m+1)(h+2m-2k+1)}\right)}_{B}\prod_{j=0}^{k-1} \frac{2(m+1)-2j}{h+2(m+1)-2j-1} \\\\&=\frac{2}{h+2m+1}+\underbrace{\sum_{k=1}^{m}\frac 1k\prod_{j=0}^{k-1} \frac{2(m+1)-2j}{h+2(m+1)-2j-1}}_{C} \\\\&\qquad\quad -\frac{h-1}{m+1}\sum_{k=1}^{m}\frac{1}{h+2m-2k+1}\prod_{j=0}^{k-1} \frac{2(m+1)-2j}{h+2(m+1)-2j-1} \\\\&=\frac{2}{h+2m+1}+\underbrace{\left(\sum_{k=1}^{m+1}\frac 1k\prod_{j=0}^{k-1} \frac{2(m+1)-2j}{h+2(m+1)-2j-1}\right)-\frac{1}{m+1}\prod_{j=0}^{m}\frac{2m+2-2j}{h+2m-2j+1}}_{C} \\\\&\qquad\quad -\frac{h-1}{m+1}\sum_{k=1}^{m}\frac{1}{h+2m-2k+1}\prod_{j=0}^{k-1} \frac{2(m+1)-2j}{h+2(m+1)-2j-1} \\\\&=\frac{2}{h+2m+1}+\sum_{k=1}^{m+1}\frac 1k\prod_{j=0}^{k-1} \frac{2(m+1)-2j}{h+2(m+1)-2j-1} \\\\&\qquad\quad \underbrace{-\frac{1}{m+1}\prod_{j=0}^{m}\frac{2m+2-2j}{h+2m-2j+1}-\frac{h-1}{m+1}\sum_{k=1}^{m}\frac{1}{h+2m-2k+1}\prod_{j=0}^{k-1} \frac{2(m+1)-2j}{h+2(m+1)-2j-1}}_{D} \\\\&=\frac{2}{h+2m+1}+\sum_{k=1}^{m+1}\frac 1k\prod_{j=0}^{k-1} \frac{2(m+1)-2j}{h+2(m+1)-2j-1} \\\\&\qquad\quad \underbrace{-\frac{h-1}{m+1}\sum_{k=1}^{m+1}\frac{1}{h+2m-2k+1}\prod_{j=0}^{k-1} \frac{2(m+1)-2j}{h+2(m+1)-2j-1}}_{D} \\\\&=\sum_{k=1}^{m+1}\frac 1k\prod_{j=0}^{k-1} \frac{2(m+1)-2j}{h+2(m+1)-2j-1}\qquad\blacksquare\end{align}$$
The last equality comes from that $$\frac{h-1}{m+1}\sum_{k=1}^{m+1}\frac{1}{h+2m-2k+1}\prod_{j=0}^{k-1} \frac{2(m+1)-2j}{h+2(m+1)-2j-1}=\frac{2}{h+2m+1}\tag2$$
Finally, let us prove $(2)$ using a telescoping sum.
Let $$f(k):=\prod_{j=0}^{k-1} \frac{2(m+1)-2j}{h+2(m+1)-2j-1}$$
The key is $$\frac{f(k)}{h+2m-2k+1}=\frac{1}{1-h}\left(f(k+1)-f(k)\right)\tag3$$ which holds since $$\begin{align}f(k+1)-f(k)&=f(k)\left(\frac{2(m+1)-2k}{h+2(m+1)-2k-1}-1\right)\\\\&=\frac{f(k)}{h+2m-2k+1}(2m+2-2k-(h+2m-2k+1))\\\\&=\frac{f(k)}{h+2m-2k+1}(1-h)\end{align}$$ Using $(3)$, we have $$\begin{align}\frac{h-1}{m+1}\sum_{k=1}^{m+1}\frac{f(k)}{h+2m-2k+1}&=\frac{h-1}{m+1}\sum_{k=1}^{m+1}\frac{1}{1-h}\left(f(k+1)-f(k)\right)\\\\&=-\frac{1}{m+1}\sum_{k=1}^{m+1}\left(f(k+1)-f(k)\right)\\\\&=-\frac{1}{m+1}(f(m+2)-f(1))\\\\&=-\frac{1}{m+1}\left(0-\frac{2(m+1)}{h+2(m+1)-1}\right)\\\\&=\frac{2}{h+2m+1}\qquad\blacksquare\end{align}$$