Let $M, N$ be two $A$ modules. The proposition states that $S^{-1}M \otimes_{S^{-1}A} S^{-1}N \cong S^{-1}(M \otimes_A N)$.
Here is my attempted proof:
We know $S^{-1}(M \otimes_A N) \cong S^{-1}A \otimes_A (M \otimes_A N)\cong (S^{-1}A \otimes_A M) \otimes_A N \cong S^{-1}M \otimes_A N$. How do I show that $S^{-1}M \otimes_A N \cong S^{-1}M \otimes_{S^{-1}A} S^{-1}N$?
We have \begin{align} S^{-1}M\otimes_{S^{-1}A}S^{-1}N &\cong (S^{-1}A\otimes _A M)\otimes_{S^{-1}A}(S^{-1}A\otimes_A N)&&\text{by Proposition 3.5}\\ &\cong (M\otimes_A S^{-1}A)\otimes_{S^{-1}A}(S^{-1}A\otimes_A N)&&\text{by Proposition 2.14(i)}\\ &\cong M\otimes_A (S^{-1}A\otimes_{S^{-1}A}(S^{-1}A\otimes_A N))&&\text{by Exercise 2.15}\\ &\cong M\otimes_A ((S^{-1}A\otimes_{S^{-1}A}S^{-1}A)\otimes_A N)&&\text{by Exercise 2.15}\\ &\cong M\otimes_A (N\otimes_A(S^{-1}A\otimes_{S^{-1}A}S^{-1}A))&&\text{by Proposition 2.14(i)}\\ &\cong (M\otimes_A N)\otimes_A(S^{-1}A\otimes_{S^{-1}A}S^{-1}A)&&\text{by Proposition 2.14(ii)}\\ &\cong (S^{-1}A\otimes_{S^{-1}A}S^{-1}A)\otimes_A(M\otimes_A N)&&\text{by Proposition 2.14(i)}\\ &\cong S^{-1}A\otimes_A(M\otimes_A N)&&\text{by Proposition 2.14(iv)}\\ &\cong S^{-1}(M\otimes_A N)&&\text{by Proposition 3.5} \end{align}