I have a simple linear regression $y=\beta_{0}+\beta_{1}x + \epsilon$ and the formula for the fitted regression $\hat y=\hat \beta_{0}+\hat \beta_{1}x$. The book takes for granted that the following is true $$\Bbb E[\epsilon \hat y]=\Bbb E[\epsilon]\Bbb E[\hat y]$$ and that means that $\epsilon,\hat y$ are independent random variables. Can you show me why this is true?
2026-02-22 19:35:42.1771788942
Prove that a random error and the fitted value of y are independent
448 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in STATISTICS
- Given is $2$ dimensional random variable $(X,Y)$ with table. Determine the correlation between $X$ and $Y$
- Given $U,V \sim R(0,1)$. Determine covariance between $X = UV$ and $V$
- Fisher information of sufficient statistic
- Solving Equation with Euler's Number
- derive the expectation of exponential function $e^{-\left\Vert \mathbf{x} - V\mathbf{x}+\mathbf{a}\right\Vert^2}$ or its upper bound
- Determine the marginal distributions of $(T_1, T_2)$
- KL divergence between two multivariate Bernoulli distribution
- Given random variables $(T_1,T_2)$. Show that $T_1$ and $T_2$ are independent and exponentially distributed if..
- Probability of tossing marbles,covariance
- Can I measure the variance of an integral estimate?
Related Questions in REGRESSION
- How do you calculate the horizontal asymptote for a declining exponential?
- Linear regression where the error is modified
- Statistics - regression, calculating variance
- Why does ANOVA (and related modeling) exist as a separate technique when we have regression?
- Convergence of linear regression coefficients
- The Linear Regression model is computed well only with uncorrelated variables
- How does the probabilistic interpretation of least squares for linear regression works?
- How to statistically estimate multiple linear coefficients?
- Ridge Regression in Hilbert Space (RKHS)
- A question regarding standardized regression coefficient in a regression model with more than one independent variable
Related Questions in LINEAR-REGRESSION
- Least Absolute Deviation (LAD) Line Fitting / Regression
- How does the probabilistic interpretation of least squares for linear regression works?
- A question regarding standardized regression coefficient in a regression model with more than one independent variable
- Product of elements of a linear regression
- Covariance of least squares parameter?
- Contradiction in simple linear regression formula
- Prove that a random error and the fitted value of y are independent
- The expected value of mean sum of square for the simple linear regression
- How to get bias-variance expression on linear regression with p parameters?
- Relationship between noise term ($\epsilon$) and MLE solution for Linear Regression Models.
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
$\hat{Y}$ is projection of $Y$ onto $C(X)$, hence just show that $$ \mathbb{E}[\epsilon X]=0. $$ Namely, $$ \mathbb{E}[\epsilon X]=\mathbb{E}[Y - \beta_0 - \beta_1x |x] = \mathbb{E}[Y\mid x] - \mathbb{E}[\beta_0 + \beta_1x\mid x] $$ $$ \mathbb{E}[\epsilon X]=\mathbb{E}[\beta_0 + \beta_1x\mid x]-\mathbb{E}[\beta_0 + \beta_1x\mid x]=0. $$ I.e., it shows that $\operatorname{cov}(X,\epsilon)=0$, thus as $\hat{Y}$ is linear projection, $\hat{Y} = HY = f(X)$, $\operatorname{cov}(f(X),\epsilon)=0$.