How do we derive the $\mathbb{E}(\hat{\beta}_{LS})$ and $\textbf{Cov}(\hat{\beta}_{LS})$. How does the randomness of ${\epsilon_i}$ contribute to this?
2026-02-22 17:54:47.1771782887
Covariance of least squares parameter?
45 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in STATISTICS
- Statistics based on empirical distribution
- Given $U,V \sim R(0,1)$. Determine covariance between $X = UV$ and $V$
- Fisher information of sufficient statistic
- Solving Equation with Euler's Number
- derive the expectation of exponential function $e^{-\left\Vert \mathbf{x} - V\mathbf{x}+\mathbf{a}\right\Vert^2}$ or its upper bound
- Determine the marginal distributions of $(T_1, T_2)$
- KL divergence between two multivariate Bernoulli distribution
- Given random variables $(T_1,T_2)$. Show that $T_1$ and $T_2$ are independent and exponentially distributed if..
- Probability of tossing marbles,covariance
- Can I measure the variance of an integral estimate?
Related Questions in PROOF-WRITING
- how is my proof on equinumerous sets
- Do these special substring sets form a matroid?
- How do I prove this question involving primes?
- Total number of nodes in a full k-ary tree. Explanation
- Prove all limit points of $[a,b]$ are in $[a,b]$
- $\inf A = -\sup (-A)$
- Prove that $\sup(cA)=c\sup(A)$.
- Supremum of Sumset (Proof Writing)
- Fibonacci Numbers Proof by Induction (Looking for Feedback)
- Is my method correct for to prove $a^{\log_b c} = c^{\log_b a}$?
Related Questions in COVARIANCE
- Let $X, Y$ be random variables. Then: $1.$ If $X, Y$ are independent and ...
- Correct formula for calculation covariances
- How do I calculate if 2 stocks are negatively correlated?
- Change order of eigenvalues and correspoding eigenvector
- Compute the variance of $S = \sum\limits_{i = 1}^N X_i$, what did I do wrong?
- Bounding $\text{Var}[X+Y]$ as a function of $\text{Var}[X]+\text{Var}[Y]$
- covariance matrix for two vector-valued time series
- Calculating the Mean and Autocovariance Function of a Piecewise Time Series
- Find the covariance of a brownian motion.
- Autocovariance of a Sinusodial Time Series
Related Questions in LEAST-SQUARES
- Is the calculated solution, if it exists, unique?
- Statistics - regression, calculating variance
- Dealing with a large Kronecker product in Matlab
- How does the probabilistic interpretation of least squares for linear regression works?
- Given matrix $Q$ and vector $s$, find a vector $w$ that minimizes $\| Qw-s \|^2$
- Defects of Least square regression in some textbooks
- What is the essence of Least Square Regression?
- Alternative to finite differences for numerical computation of the Hessian of noisy function
- Covariance of least squares parameter?
- Least squares partial derivatives to matrix form
Related Questions in LINEAR-REGRESSION
- Least Absolute Deviation (LAD) Line Fitting / Regression
- How does the probabilistic interpretation of least squares for linear regression works?
- A question regarding standardized regression coefficient in a regression model with more than one independent variable
- Product of elements of a linear regression
- Contradiction in simple linear regression formula
- Prove that a random error and the fitted value of y are independent
- Is this a Generalized Linear Model?
- The expected value of mean sum of square for the simple linear regression
- How to get bias-variance expression on linear regression with p parameters?
- Relationship between noise term ($\epsilon$) and MLE solution for Linear Regression Models.
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Suppose the model is $Y=X\beta+\epsilon$, where $Y=(Y_1,...,Y_n)'$ are the responses from $n$ measurements, and $X$ is the $n\times p$ matrix of corresponding explanatory variables. The least square estimate is in the following form $$\hat\beta_{LS}=(X'X)^{-1}X'Y. $$
The randomness of $Y$ comes from $\epsilon$. If we assume $\mathbb E(\epsilon) = 0$ and $\text{cov}(\epsilon)=\Sigma$, You can see that $$\mathbb E \hat\beta_{LS} = (X'X)^{-1}X'(X\beta)=\beta;$$ $$\text{cov}(\hat\beta_{LS}) = (X'X)^{-1}X'\Sigma X(X'X)^{-1}$$. We used the fact that for any matrix $A$ and random vector $X$, $$\mathbb{E}(AX)=A\mathbb{E}(X);$$ $$\text{cov}(AX)=A\text{cov}(X)A'. $$