Prove the following relation \begin{equation} 2\sum_{k=1}^{N}\cos^2\big(\frac{k\pi}{N+1}\big) = N-1. \end{equation} where $N$ is even. Any ideas?
2026-02-22 23:33:15.1771803195
On
Prove the sum equation
77 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
3
There are 3 best solutions below
2
On
$$\cos^2 x=\frac{1+\cos 2x}{2}\Rightarrow2\sum_{k=1}^N\cos^2\frac{k\pi}{N+1} =N+\sum_{k=1}^N\cos\frac{2k\pi}{N+1}=N-1,$$
the last equality following from: $$\sum_{k=0}^N e^{\frac{2\pi k}{N+1}}=0\Rightarrow \sum_{k=0}^N\cos{\frac{2\pi k}{N+1}}=0\Rightarrow \sum_{k=1}^N\cos{\frac{2\pi k}{N+1}}=-1.$$
The first expression is zero as it is sum of all roots of the equation $z^{N+1}=1$.
We have
$$ S=\frac{1}{2}\sum_{k=1}^N\left(e^{i\frac{k\pi}{N+1}}+e^{-i\frac{k\pi}{N+1}}\right)^2=\frac{1}{2}\sum_{k=1}^N\left(e^{2i\frac{k\pi}{N+1}}+e^{-2i\frac{k\pi}{N+1}}+2\right)$$
Can you evaluate this using geometric series?