I was asked to prove :$A \times (B \times C)=(A\cdot C)B-(A\cdot B)C$ using vector multiplication of $3$ dimension
I chose $A=(a_x,a_y,a_z)$, $B=(b_x,b_y,b_z)$, $C=(c_x,c_y,c_z)$ and start with the LHS.
$(a_x,a_y,a_z)\times [(b_x,b_y,b_z)\times(c_x,c_y,c_z)]=$
$(a_x,a_y,a_z)\times[b_xc_y\hat Z+b_xc_z\hat Y-b_yc_x\hat Z+b_yc_z\hat X -b_zc_x\hat Y -b_zc_y\hat X]=$
$(a_x,a_y,a_z)\times[(b_xc_y-b_yc_x)\hat Z+(b_xc_z-b_zc_x)\hat Y+(b_yc_z-b_zc_y)\hat X]=$
$(a_xb_xc_y-a_xb_yc_x)\hat Y+(a_xb_xc_z-a_xb_zc_x)\hat Z-(a_yb_xc_y-a_yb_yc_x)\hat X-(a_yb_yc_z-a_yb_zc_y)\hat Z-(a_zb_xc_z-a_zb_zc_x)\hat X-(a_zb_yc_z-a_zb_zc_y)\hat Y=$
$(a_xb_xc_y-a_xb_yc_x-a_zb_yc_z+a_zb_zc_y)\hat Y+(a_xb_xc_z-a_xb_zc_x-a_yb_yc_z+a_yb_zc_y)\hat Z+ (-a_yb_xc_y+a_yb_yc_x-a_zb_xc_z+a_zb_zc_x)\hat X$
the RHS is:
$(a_xc_xb_x+a_yc_yb_x+a_zc_zb_x)\hat X+(a_xc_xb_y+a_yc_yb_y+a_zc_zb_y)\hat Y+(a_xc_xb_z+a_yc_yb_z+a_zc_zb_z)\hat Z-(a_xb_xc_x+a_yb_yc_x+a_zb_zc_x)\hat X-(a_xb_xc_y+a_yb_yc_y+a_zb_zc_y)\hat Y-(a_xb_xc_z+a_yb_yc_z+a_zb_zc_z)\hat Z=$
$(a_yc_yb_x+a_zc_zb_x-a_yb_yc_x-a_zb_zc_x)\hat X +(a_xc_xb_y+a_zc_zb_y-a_xb_xc_y-a_zb_zc_y)\hat Y (a_xc_xb_z+a_yc_yb_z-a_xb_xc_z-a_yb_yc_z)\hat Z$
How should I proceed now? the RHS is a vector of a kind $(\alpha b_x,\beta b_y, \gamma b_z)+(\alpha c_x,\beta c_y, \gamma c_z)$
You have expanded the left side.
Now, expand the right side. With any luck, the two expansions will agree.
A note: I would have written the terms as $(x, y, z)$ instead of using hats.