I'm trying to prove the below equivalence without truth table.
$(P \vee Q \vee R)$ and $(P \wedge \neg Q) \vee (Q \wedge \neg R) \vee (R \wedge \neg P) \vee (P \wedge Q \wedge R)$
I begin with the left hand expression using the law:
$P = (P \wedge T) = (P \wedge (Q \vee \neg Q)) = $ $(P \wedge Q) \vee (P \wedge \neg Q)$
Using this, I arrive at the below expression:
$(P \wedge Q) \vee (P \wedge \neg Q) \vee (Q \wedge R) \vee (Q \wedge \neg R) \vee (R \wedge P) \vee (R \wedge \neg P)$
Which can be re arranged to form:
$(P \wedge \neg Q) \vee (Q \wedge \neg R) \vee (R \wedge \neg P) \vee (P \wedge Q) \vee (Q \wedge R) \vee (R \wedge P)$
And this is where I get stuck. Shouldn't the last three terms be equivalent to $(P \wedge Q \wedge R)$?? But if you look at the truth table, they are not. Or does such similarities don't work with these expressions. I think i'm doing something wrong but can't figure out what exactly.
By laws of associativity, commutativity and idempotence, RHS can be rearranged to \begin{align} RHS&=(((P \land \neg Q) \lor (P \land Q \land R))\lor (R \land \neg P)) \\ &\quad\lor(((Q\land \neg R) \lor (P \land Q \land R))\lor(P \land \neg Q)) \\ &\quad\lor(((R\land \neg P) \lor (P \land Q \land R))\lor(Q \land \neg R)) \\ &=I_1\lor I_2\lor I_3 \end{align} First there is \begin{align} I_1&=(P \land (\neg Q \lor (Q \land R)))\lor (R \land \neg P) \\ &=(P \land ((\neg Q \lor Q) \land (\neg Q \lor R)))\lor (R \land \neg P) \\ &=(P \land (\neg Q \lor R))\lor (R \land \neg P) \\ &=(P \land \neg Q)\lor(P \land R)\lor (R \land \neg P) \\ &=(P \land \neg Q)\lor(R \land (P\lor \neg P)) \\ &=(P \land \neg Q)\lor R \end{align} Likewise $$ I_2=(Q \land \neg R)\lor P\quad\text{and }\quad I_3=(R \land \neg P)\lor Q $$ So $$ RHS=I_1\lor I_2\lor I_3=((P \land \neg Q)\lor P)\lor((Q \land \neg R)\lor Q)\lor((R \land \neg P)\lor R) $$ And by by absorption law, $(P \land \neg Q)\lor P=P$ and so on. So $$ RHS=P\lor Q\lor R $$