I'm wondering if any known property holds for a pullback square of the following form: $$ \require{AMScd} \begin{CD} Y @>{g}>> X \\ @V{h}VV @V{f}VV \\ Y @>{g}>> X \end{CD} $$ In particular, when working in a topos with $g$ mono and $f$ and $h$ idempotent arrows, can we deduce something more? I was really hoping that $h$ would be an isomorphism, but I can't find neither a proof nor a counterexample
2026-02-22 19:27:20.1771788440
Pullback square with two identical sides
68 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in CATEGORY-THEORY
- (From Awodey)$\sf C \cong D$ be equivalent categories then $\sf C$ has binary products if and only if $\sf D$ does.
- Continuous functor for a Grothendieck topology
- Showing that initial object is also terminal in preadditive category
- Is $ X \to \mathrm{CH}^i (X) $ covariant or contravariant?
- What concept does a natural transformation between two functors between two monoids viewed as categories correspond to?
- Please explain Mac Lane notation on page 48
- How do you prove that category of representations of $G_m$ is equivalent to the category of finite dimensional graded vector spaces?
- Terminal object for Prin(X,G) (principal $G$-bundles)
- Show that a functor which preserves colimits has a right adjoint
- Show that a certain functor preserves colimits and finite limits by verifying it on the stalks of sheaves
Related Questions in LIMITS-COLIMITS
- Show that a certain functor preserves colimits and finite limits by verifying it on the stalks of sheaves
- Prove that a "tensor product" principal $G$-bundle coincides with a "pullback" via topos morphism
- What prevents me from starting the cone in the objects mapped by the diagram
- Two morphisms $f, g : M \to L$ are equal as long as they are equal under the limit $L$.
- Separating coproducts by its index set
- Preservation of coproducts by coproducts
- Categorification of commutative sum
- Colimit of a directed system of modules
- Subring of an inverse limit is the entire thing if maps to pieces are surjective
- Ring Localization as directed colimit of finitely generated free module
Related Questions in PULLBACK
- Pullbacks and pushouts with surjective functions and quotient sets?
- Is a conformal transformation also a general coordinate transformation?
- Pullbacks and differential forms, require deep explanation + algebra rules
- $\Pi_f$ for a morphism $f$ between simplicial sets
- Find a non vanishing differential form on the torus
- Suppose that $X$ is a sub affine variety of $Y$ , and let $φ : X \to Y$ be the inclusion. Prove that $φ^*$ is surjective...
- Equality Proof of Pushforward and Pullback
- Why $f'$ is an isomorphism if the rightmost square is a pullback?
- Why the rightmost square is a pullback?
- Prove pullback of $f$ on $T^{k}(V)$ is a linear transformation
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Here's a simple source of counterexamples.
Let $Y = X$ and $g = 1_X$. Then you have a pullback square if and only if $h=f$. (and also, the square commutes if and only if $h=f$)