Let $K$ be a field of cohomological dimension 1 and $C$ be a smooth projective conic over $K$. Is it true that $C$ always has a $K$-point?
2026-02-22 17:35:29.1771781729
Rational points on conics over fields of dimension 1
210 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in ALGEBRAIC-GEOMETRY
- How to see line bundle on $\mathbb P^1$ intuitively?
- Jacobson radical = nilradical iff every open set of $\text{Spec}A$ contains a closed point.
- Is $ X \to \mathrm{CH}^i (X) $ covariant or contravariant?
- An irreducible $k$-scheme of finite type is "geometrically equidimensional".
- Global section of line bundle of degree 0
- Is there a variant of the implicit function theorem covering a branch of a curve around a singular point?
- Singular points of a curve
- Find Canonical equation of a Hyperbola
- Picard group of a fibration
- Finding a quartic with some prescribed multiplicities
Related Questions in HOMOLOGY-COHOMOLOGY
- Are these cycles boundaries?
- Cohomology groups of a torus minus a finite number of disjoint open disks
- $f$ - odd implies $d(f)$ - odd, question to the proof
- understanding proof of excision theorem
- proof of excision theorem: commutativity of a diagram
- exact sequence of reduced homology groups
- Doubts about computation of the homology of $\Bbb RP^2$ in Vick's *Homology Theory*
- the quotien space of $ S^1\times S^1$
- Rational points on conics over fields of dimension 1
- Can $X=SO(n)\setminus\{I_n\}$be homeomorphic to or homotopic equivalent to product of spheres?
Related Questions in HOMOLOGICAL-ALGEBRA
- How does $\operatorname{Ind}^G_H$ behave with respect to $\bigoplus$?
- Describe explicitly a minimal free resolution
- $A$ - dga over field, then $H^i(A) = 0, i > 1$ implies $HH_i(A) = 0, i < -1$
- Tensor product $M\otimes_B Hom_B(M,B)$ equals $End_B(M)$, $M$ finitely generated over $B$ and projective
- Group cohomology of $\mathrm{GL}(V)$
- two maps are not homotopic equivalent
- Existence of adjugant with making given natural transformation be the counit
- Noetherian property is redundant?
- What is the monomorphism that forms the homology group?
- $Ext(-,\mathbb Z)$ for profinite (Galois) groups
Related Questions in ALGEBRAIC-CURVES
- Singular points of a curve
- Finding a quartic with some prescribed multiplicities
- Tangent lines of a projective curve
- Value of $t$ for which a curve has singular points.
- Reference for $L$-functions of curves
- Bézout's theorem for intersection of curves
- Curves of genus 0
- Multiplicity of singular points in a curve.
- Intersection of a quartic and conics.
- Rational points on conics over fields of dimension 1
Related Questions in ALGEBRAIC-K-THEORY
- Compute Thom and Euler class
- Rational points on conics over fields of dimension 1
- An immediate result of fundamental theorem of algebraic $K$-theory.
- Algebraic $K_2$ as "universal receptacle"?
- trying to understand the connecting homomorphism between K theory groups
- Motivation of $G_0$ group
- Degreewise cofibration in $S_nC$
- Definition of algebraic K-theory space
- Nerve of a simplicial category
- Understanding a proof from algebraic k-theory
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Yes. Every such conic is a Severi-Brauer variety, so is classified by an element of the Brauer group $H^2(K, \mathbb{G}_m)$, which vanishes by hypothesis. The trivial element of the Brauer group corresponds to the Severi-Brauer variety $\mathbb{P}^1$, which in turn corresponds to the original Severi-Brauer variety having a rational point.
Note that if $K$ is a finite field you can argue more directly using the Chevalley-Warning theorem.