I'm trying to find the Riemann surface that makes $w=z-\sqrt{z^2-1}$ single-valued, but I'm not sure how to approach the problem.
2025-01-13 05:41:49.1736746909
Riemann surface with $w=z-\sqrt{z^2-1}$ single-valued
99 Views Asked by user284954 https://math.techqa.club/user/user284954/detail AtRelated Questions in COMPLEX-ANALYSIS
- Laurent series of $f(z)=\frac{1}{z^2-1}$
- Integrating using Green's Theorem
- How well does $L_{n,f}$ approximate $f$?
- question over a integration changes order and hard to compute
- Estimate of a (integral) function
- Is the following series convergent or divergent?
- The Laurent series of $\exp(1/z)$: comparing its constant term and the value at $0$
- Whether $f(z) = z$ is analytic at the infinity?
- Does a function with an exponential growth condition necessarily have infinitely many zeros?
- How to derive the value of $\log(-1)$?
Related Questions in RIEMANN-SURFACES
- Bijective conformal maps from a torus to itself
- Deduce riemannian mapping theorem for domains of $\hat{\mathbb{C}}$ from uniformization theorem
- Is there a complex surface into which every Riemann surface embeds?
- cohomology of a tangent bundle
- Show $f$ is an immersion, where $f$ holomorphic map between compact Riemann Surfaces
- Are there closed Riemann surfaces without non-constant holomorphic functions?
- Meromorphic function written as Weierstrass Elliptic Function
- Under what conditions do there exist non-constant meromorphic functions between general Riemann surfaces?
- Riemann surface with $w=z-\sqrt{z^2-1}$ single-valued
- What are the morphisms in the category of unramified coverings over a compact Riemann surface?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Refuting the Anti-Cantor Cranks
- Find $E[XY|Y+Z=1 ]$
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- What are the Implications of having VΩ as a model for a theory?
- How do we know that the number $1$ is not equal to the number $-1$?
- Defining a Galois Field based on primitive element versus polynomial?
- Is computer science a branch of mathematics?
- Can't find the relationship between two columns of numbers. Please Help
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- A community project: prove (or disprove) that $\sum_{n\geq 1}\frac{\sin(2^n)}{n}$ is convergent
- Alternative way of expressing a quantied statement with "Some"
Popular # Hahtags
real-analysis
calculus
linear-algebra
probability
abstract-algebra
integration
sequences-and-series
combinatorics
general-topology
matrices
functional-analysis
complex-analysis
geometry
group-theory
algebra-precalculus
probability-theory
ordinary-differential-equations
limits
analysis
number-theory
measure-theory
elementary-number-theory
statistics
multivariable-calculus
functions
derivatives
discrete-mathematics
differential-geometry
inequality
trigonometry
Popular Questions
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- How to find mean and median from histogram
- Difference between "≈", "≃", and "≅"
- Easy way of memorizing values of sine, cosine, and tangent
- How to calculate the intersection of two planes?
- What does "∈" mean?
- If you roll a fair six sided die twice, what's the probability that you get the same number both times?
- Probability of getting exactly 2 heads in 3 coins tossed with order not important?
- Fourier transform for dummies
- Limit of $(1+ x/n)^n$ when $n$ tends to infinity