I am well aware that set membership does not form a relation over all sets. Indeed, it would form a proper class of ordered pairs of sets. However, if we are already given a particular set, say $\alpha$, does $$< : = \{(\mu, \pi) \in \alpha \times \alpha \mid \mu \in \alpha\}$$ not form a set? If so couldn’t we just have that relation be defined on all ordinals? Many set theory books mention that universal membership is a proper class and so we only think of it as a pseudo relation, but make no mention of that question when considering a particular fixed set. So then each ordinal $\beta$ is actually a well-ordered set, yet the class of all ordinals $\Omega$ is still only pseudo ordered?
2026-02-22 18:51:44.1771786304
Set membership as a relation on a particular set
100 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in SET-THEORY
- Theorems in MK would imply theorems in ZFC
- What formula proved in MK or Godel Incompleteness theorem
- Proving the schema of separation from replacement
- Understanding the Axiom of Replacement
- Ordinals and cardinals in ETCS set axiomatic
- Minimal model over forcing iteration
- How can I prove that the collection of all (class-)function from a proper class A to a class B is empty?
- max of limit cardinals smaller than a successor cardinal bigger than $\aleph_\omega$
- Canonical choice of many elements not contained in a set
- Non-standard axioms + ZF and rest of math
Related Questions in ORDINALS
- Ordinals and cardinals in ETCS set axiomatic
- For each cardinal number $u$, there exists a smallest ordinal number $\alpha$ such that card$\alpha$ =$u$ .
- Intuition regarding: $\kappa^{+}=|\{\kappa\leq\alpha\lt \kappa^{+}\}|$
- Set membership as a relation on a particular set
- Goodstein's sequences and theorem.
- A proof of the simple pressing down lemma, is sup $x=x?$
- $COF(\lambda)$ is stationary in $k$, where $\lambda < k$ is regular.
- What are $L_1$ and $L_2$ in the Gödel Constructible Hierarchy
- How many subsets are produced? (a transfinite induction argument)
- Subset of $\Bbb R$ isomorphic to $\omega+\omega$ and another isomorphic to $\omega\times\omega$
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Yes, this is a consequence of the separation axiom scheme: for $\alpha$ a set (ordinal or otherwise), the class of pairs $(\beta,\gamma)\in\alpha\times\alpha$ with $\beta\in\gamma$ is a set. Just apply separation to the set $\alpha\times\alpha$ using the formula "$x\in y$."
So in particular, yes, every ordinal is genuinely a well-ordered (by "$\in$") set.