Question:
Show that there do not exist real, distinct $a,b,c,d$ such that $a^3+b^3=c^3+d^3$ and $a+b=c+d$.
My attempt:
$$a^3+b^3=c^3+d^3\implies(a+b)(a^2+b^2-ab)=(c+d)(c^2+d^2-cd)$$ Since $a+b=c+d$: $$\implies a^2+b^2-ab=c^2+d^2-cd$$ Substituting $b=c+d-a$ from second equation: $$\implies a^2+(c+d-a)^2=c^2+d^2-cd$$ $$\implies a^2+a^2+c^2+d^2+2cd-2ac-2ad=c^2+d^2-cd$$ $$\implies 2a^2+3cd-2ac-2ad=0$$
I am stuck here, and need some hints to proceed.
It's true if $(a+b)(c+d)\neq 0$ (if not, then $(a,b,c,d)=(a,-a,c,-c)$ is a counterexample for any $a,c\in\Bbb R_{\neq 0}$), so I assume it.
$a^3+b^3=c^3+d^3\iff (a+b)\left(a^2-ab+b^2\right)=(c+d)\left(c^2-cd+d^2\right)$. Since $(a+b)(c+d)\neq 0$, this is equivalent to
$$a^2-ab+b^2=c^2-cd+d^2\ \ \ (1)\ \ \iff (a+b)^2-3ab=(c+d)^2-3cd$$
But $a+b=c+d$, so $-3ab=-3cd\iff ab=cd$. Then $(1)$ implies $a^2+b^2=c^2+d^2$, so $a^2-c^2=d^2-b^2$, so $(a+c)(a-c)=(d+b)(d-b)$. But $a-c=d-b\neq 0$ (because $a+b=c+d$ and $a,b,c,d$ are distinct), so $a+c=d+b$. Adding this with $a+b=c+d$ gives $a=d$, contradiction.