$\mu$ is a probability measure on $(X, B(X))$, and $r>0$. define $f(x)= \mu(B_r(x))$. I need to show that $f$ is measurable. I tried to show semi-continuity, but it failed. any other idea?
2026-02-22 21:51:15.1771797075
showing that $f(x)=\mu(B(x,r))$ is measurable
52 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in MEASURE-THEORY
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Absolutely continuous functions are dense in $L^1$
- I can't undestand why $ \{x \in X : f(x) > g(x) \} = \bigcup_{r \in \mathbb{Q}}{\{x\in X : f(x) > r\}\cap\{x\in X:g(x) < r\}} $
- Trace $\sigma$-algebra of a product $\sigma$-algebra is product $\sigma$-algebra of the trace $\sigma$-algebras
- Meaning of a double integral
- Random variables coincide
- Convergence in measure preserves measurability
- Convergence in distribution of a discretized random variable and generated sigma-algebras
- A sequence of absolutely continuous functions whose derivatives converge to $0$ a.e
- $f\in L_{p_1}\cap L_{p_2}$ implies $f\in L_{p}$ for all $p\in (p_1,p_2)$
Related Questions in MEASURABLE-FUNCTIONS
- Show if function is Lebesgue-measurable
- Square Integrable Functions are Measurable?
- Discontinuous Brownian Motion
- showing that $f(x)=\mu(B(x,r))$ is measurable
- Can someone explain the indicator function to me?
- Why the characteristic function is measurable?
- Distance metric limits to 0 if and only if convergence in measure
- Characterizing the dual space of the linear space of the signed measures generated by a given set of measures.
- $f: [0,1]\rightarrow L^1(\Omega)$ as a (measurable?) function from $[0,1]\times \Omega\rightarrow \mathbb{R}$
- What can be said about the measure of the image of a subset of $\mathbb R^d$ of measure zero under a measurable function?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Lower semi-continuity is the way to go. Let me sketch you a proof:
let $x_k\rightarrow x$. Then for all $k$ big enough you have for a choosen $\varepsilon>0$ $$B_{r-\varepsilon}(x)\subseteq B_r(x_k).$$ Then monotonicity gives you $$\mu(B_{r-\varepsilon}(x))\leq \liminf_{k\rightarrow\infty}\mu(B_r(x_k)).$$ Now let $\varepsilon\rightarrow 0$ and use the continuity of a measure to obtain $$\lim_{\varepsilon\rightarrow 0}\mu(B_{r-\varepsilon}(x))=\mu(\bigcup_{\varepsilon>0}(B_{r-\varepsilon}(x))=\mu(B_r(x)).$$