Can someone explain to me the reason why the simplex algorithm proceeds by only considering so-called basic solutions as candidates for the optimal solution to an LP?
2026-02-22 21:53:43.1771797223
Simplex Algorithm: basic solutions - optimal solution
625 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in LINEAR-PROGRAMMING
- Proving dual convex cone property
- Linear algebra: what is the purpose of passive transformation matrix?
- Building the model for a Linear Programming Problem
- Show that $ \ x_ 0 \ $ cannot be an optimal solution
- Is there any way to model this situation in integer programming?
- How to Solve a Linear Programming Problem in $n$ Dimension Space?
- How to solve a linear program without any given data?
- Constraints for continuous path within graph with at least one obligatory node in path
- Select the smallest strict positive value from a list of variables in a linear program.
- How to add nonnegative constraint to an LP problem
Related Questions in SIMPLEX
- Simplex Algorithm: basic solutions - optimal solution
- Homotopy type of simplicial complexes
- Face map not well-defined on oriented simplices
- Linear Programming: What is the rationale behind the Gauss Jordan Row operations we do after determining the leaving and entering variables?
- "No two values are the same" constraint in linear programming
- Optimal solution in Duplex simplex method
- How to add regularization to simplex solver
- Linear Optimization: Duality in Simplex
- Finding the vertices of linear image of the $n$-simplex
- Formulating LPP from given optimal table in Simplex method
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
This is due to the Fundamental Theorem of Linear Programming, which states that a LPP has an optimal solution if and only if it has an optimal basic solution.
Therefore, in a (dual) simplex algorithm, it suffices to explore only the basic solutions (which are finitely many) instead of the whole feasible region (which is uncountably many).