I'm trying to solve:
$$ x^{1477} \equiv 54 \mod 97 $$
Applying Euler-Fermat gives:
$$ x^{1477} = x^{15\cdot 96 + 37} = x^{37}\cdot x^{{96}^{15}} \equiv x^{37}\cdot 1^{15} = x^{37} \mod 97 $$
So instead of solving $ x^{1477} \equiv 54 \mod 97 $ one can solve $ x^{37} \equiv 54 \mod 97 $. How could I proceed from here? I know about the Chinese Remainer Theorem and Euler-Fermat.
If $x^{37} \equiv 54 \pmod {97}$ then $x^{37\cdot 24} \equiv 54^{24} \equiv 1 \pmod {97}$ because the order of $54 \pmod {97}$ is $24$.
This means the order of $x$ is a common divisor of $96$ and $37 \cdot 24$.
Therefore the order of $x$ is a divisor of $24$, and so $x^{24} \equiv 1 \pmod {97}$.
But if $k$ is a divisor of $24$ then $x^k \equiv 1 \pmod {97}$ implies $1 \equiv x^{37k} \equiv 54^k \pmod {97}$ so $24$ divides $k$.
Therefore the order of $x$ is $24$.
That means $x^{12} \equiv -1 \pmod {97}$.
So $54 \equiv x^{37} \equiv x^{1 + 3\cdot 12} \equiv x\left(x^{12}\right)^3\equiv x(-1)^3 \equiv -x \pmod {97}$
Finally, we obtain $x \equiv -54 \pmod {97}$, or $x \equiv 43$.