How would I solve for a function $f\left(\sqrt{x^2+z^2}\right)$ given $g(z)=\int_{-\infty}^{+\infty}{\left(f\left(\sqrt{x^2+z^2}\right)\frac{1}{\sqrt{x^2+z^2}}\right)}dx$? I understand that derivatives are the inverse operation of indefinite integral but I'm not sure what the inverse operation of a definite integral from $-\infty$ to $\infty$ is. How would I solve for $f\left(\sqrt{x^2+z^2}\right)$ given a certain function of $g(z)$?
2026-02-22 21:04:10.1771794250
Solving for $f\left(\sqrt{x^2+z^2}\right)$ given $g(z)=\int_{-\infty}^{+\infty}{\left(f\left(\sqrt{x^2+z^2}\right)\frac{1}{\sqrt{x^2+z^2}}\right)}dx$
94 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in CALCULUS
- Equality of Mixed Partial Derivatives - Simple proof is Confusing
- How can I prove that $\int_0^{\frac{\pi}{2}}\frac{\ln(1+\cos(\alpha)\cos(x))}{\cos(x)}dx=\frac{1}{2}\left(\frac{\pi^2}{4}-\alpha^2\right)$?
- Proving the differentiability of the following function of two variables
- If $f ◦f$ is differentiable, then $f ◦f ◦f$ is differentiable
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Number of roots of the e
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Why the derivative of $T(\gamma(s))$ is $T$ if this composition is not a linear transformation?
- How to prove $\frac 10 \notin \mathbb R $
- Proving that: $||x|^{s/2}-|y|^{s/2}|\le 2|x-y|^{s/2}$
Related Questions in DERIVATIVES
- Derivative of $ \sqrt x + sinx $
- Second directional derivative of a scaler in polar coordinate
- A problem on mathematical analysis.
- Why the derivative of $T(\gamma(s))$ is $T$ if this composition is not a linear transformation?
- Does there exist any relationship between non-constant $N$-Exhaustible function and differentiability?
- Holding intermediate variables constant in partial derivative chain rule
- How would I simplify this fraction easily?
- Why is the derivative of a vector in polar form the cross product?
- Proving smoothness for a sequence of functions.
- Gradient and Hessian of quadratic form
Related Questions in DEFINITE-INTEGRALS
- How can I prove that $\int_0^{\frac{\pi}{2}}\frac{\ln(1+\cos(\alpha)\cos(x))}{\cos(x)}dx=\frac{1}{2}\left(\frac{\pi^2}{4}-\alpha^2\right)$?
- Closed form of integration
- Integral of ratio of polynomial
- An inequality involving $\int_0^{\frac{\pi}{2}}\sqrt{\sin x}\:dx $
- How is $\int_{-T_0/2}^{+T_0/2} \delta(t) \cos(n\omega_0 t)dt=1$ and $\int_{-T_0/2}^{+T_0/2} \delta(t) \sin(n\omega_0 t)=0$?
- Roots of the quadratic eqn
- Area between curves finding pressure
- Hint required : Why is the integral $\int_0^x \frac{\sin(t)}{1+t}\mathrm{d}t$ positive?
- A definite integral of a rational function: How can this be transformed from trivial to obvious by a change in viewpoint?
- Integrate exponential over shifted square root
Related Questions in INTEGRAL-EQUATIONS
- How to solve the integral equation $f(x) = \int_0^x f(x-y)k(x,y)dy+g(x)$ for $f(x)$?
- Solving for $f\left(\sqrt{x^2+z^2}\right)$ given $g(z)=\int_{-\infty}^{+\infty}{\left(f\left(\sqrt{x^2+z^2}\right)\frac{1}{\sqrt{x^2+z^2}}\right)}dx$
- Approximate solutions to nonlinear differential equations using an integral sequence
- Solving an integral equation by Fourier transform
- Composition of bounded linear operator and an inverse of a linear operator bounded?
- Volterra equation of first kind
- Solution to integral equation involving logarithms
- Importance of compact operators for numerical approximation of integral equations?
- Can integral equations be paired with linear regression to fit a double Gaussian regression?
- Solve $f(x) = \lambda\int_0^\pi(x+y)f(y)\mathrm dy$
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
A hint.
$$g(z)=\int_{-\infty}^{\infty} f \left( \sqrt{x^2+z^2} \right) \frac{dx}{\sqrt{x^2+z^2}}=$$
$$=2\int_{0}^{\infty} f \left( \sqrt{x^2+z^2} \right) \frac{dx}{\sqrt{x^2+z^2}}=\int_{z}^{\infty} f \left( r \right) \frac{dr}{\sqrt{r^2-z^2}}$$
Where $r=\sqrt{x^2+z^2}$.
We obtained an integral equation, namely a linear Volterra equation of the first kind, because one of the integration limits is variable.
$$\frac{1}{2}g(z)=\int_{z}^{\infty} f \left( r \right) \frac{dr}{\sqrt{r^2-z^2}} \tag{1}$$
Where integral kernel is:
$$K(z,r)=\frac{1}{\sqrt{r^2-z^2}}$$.
The methods for solving Volterra equation and other integral equations are present in various literature. You can look something up here for example.
If think the problem can be reduced to Abel equation which has an analytic solution.
Here's how you can do it.
Make a change of variable:
$$r=\frac{1}{\sqrt{y}}$$
Then (1) transforms to:
$$\frac{1}{2}g(z)=\frac{1}{2} \int_{0}^{1/z^2} \frac{1}{y} f \left( \frac{1}{\sqrt{y}} \right) \frac{dy}{\sqrt{1-z^2 y}}$$
$$z g(z)=\int_{0}^{1/z^2} \frac{1}{y} f \left( \frac{1}{\sqrt{y}} \right) \frac{dy}{\sqrt{1/z^2-y}}$$
Now set:
$$p=\frac{1}{z^2}$$
$$G(p)=z g(z)$$
$$F(y)=\frac{1}{y} f \left( \frac{1}{\sqrt{y}} \right)$$
Finally you obtain:
Which is exactly Abel equation. The solution is provided in the linked file.