guys i have system of the following form $A*x = b, A = BD+\epsilon * S$ where $BD$ is block-diagonal system , S - some sparse system, $\epsilon$ -- some small constant, for clearity $\lvert\lvert BD \rvert \rvert = \lvert\lvert S \rvert \rvert = 1 $. Dimensions of BD and S are large for me (~10000, solving many times per second, beyond other stuff). I want to solve it like this -- find solution of block-diagonal system $BD^{-1}$, then use it as preconditioner to get new equation ${BD}^{-1}* A* x = {BD}^{-1}*b => (I + \epsilon * {BD}^{-1}* S) * x ={BD}^{-1}*b $ that i want to solve using some relaxation method like SOR. So, the questions are following 1. What are pitfails of this method 2. Whether there exists more optimal (in terms of speed ) to solve such systems.
2026-02-22 21:30:28.1771795828
Solving linear systems of equations consists of block-diagonal part + small sparse part
206 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtRelated Questions in LINEAR-ALGEBRA
- An underdetermined system derived for rotated coordinate system
- How to prove the following equality with matrix norm?
- Alternate basis for a subspace of $\mathcal P_3(\mathbb R)$?
- Why the derivative of $T(\gamma(s))$ is $T$ if this composition is not a linear transformation?
- Why is necessary ask $F$ to be infinite in order to obtain: $ f(v)=0$ for all $ f\in V^* \implies v=0 $
- I don't understand this $\left(\left[T\right]^B_C\right)^{-1}=\left[T^{-1}\right]^C_B$
- Summation in subsets
- $C=AB-BA$. If $CA=AC$, then $C$ is not invertible.
- Basis of span in $R^4$
- Prove if A is regular skew symmetric, I+A is regular (with obstacles)
Related Questions in SYSTEMS-OF-EQUATIONS
- Can we find $n$ Pythagorean triples with a common leg for any $n$?
- System of equations with different exponents
- Is the calculated solution, if it exists, unique?
- System of simultaneous equations involving integral part (floor)
- Solving a system of two polynomial equations
- Find all possible solution in Z5 with linear system
- How might we express a second order PDE as a system of first order PDE's?
- Constructing tangent spheres with centers located on vertices of an irregular tetrahedron
- Solve an equation with binary rotation and xor
- Existence of unique limit cycle for $r'=r(μ-r^2), \space θ' = ρ(r^2)$
Related Questions in RELAXATIONS
- What does it mean to dualize a constraint in the context of Lagrangian relaxation?
- LP relaxation of the symmetric TSP problem integrality for n=5
- Semidefinite relaxation for QCQP with nonconvex "homogeneous" constraints
- Upper AND lower bound for the linear relaxation
- Upper bound for spectral radius of matrix multiplications
- $n$-sphere enclosing the Birkhoff polytope
- Solving linear systems of equations consists of block-diagonal part + small sparse part
- Solving PDEs by adding small perturbation terms and taking limits
- Semidefinite relaxation
- Simplification of a Quadratically constrained, Quadratic objective (to apply Semidefinite relaxation)
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?