In the context of Lagrangian relaxation of discrete optimization problems, what does it mean to 'dualize a constraint'?
2026-02-22 19:35:14.1771788914
What does it mean to dualize a constraint in the context of Lagrangian relaxation?
1k Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in OPTIMIZATION
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- optimization with strict inequality of variables
- Gradient of Cost Function To Find Matrix Factorization
- Calculation of distance of a point from a curve
- Find all local maxima and minima of $x^2+y^2$ subject to the constraint $x^2+2y=6$. Does $x^2+y^2$ have a global max/min on the same constraint?
- What does it mean to dualize a constraint in the context of Lagrangian relaxation?
- Modified conjugate gradient method to minimise quadratic functional restricted to positive solutions
- Building the model for a Linear Programming Problem
- Maximize the function
- Transform LMI problem into different SDP form
Related Questions in DISCRETE-OPTIMIZATION
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- Simultaneously multiple copies of each of a set of substrings of a string.
- Do these special substring sets form a matroid?
- What does it mean to dualize a constraint in the context of Lagrangian relaxation?
- What exactly the Ellipsoid method does?
- Give the cutting-plane proof of $\sum\limits_{i,j = 1}^4 x_{ij} \leq 9$.
- Relation with the perfect partition problem and the single machine task schedule problem
- What is the name of following optimization problem and algorithms to solve them
- Integrality gap of maximum weighted clique
- Looking for some information on applications of integer linear programming
Related Questions in RELAXATIONS
- LP relaxation of the symmetric TSP problem integrality for n=5
- Semidefinite relaxation for QCQP with nonconvex "homogeneous" constraints
- Upper AND lower bound for the linear relaxation
- Upper bound for spectral radius of matrix multiplications
- $n$-sphere enclosing the Birkhoff polytope
- Non-convex objective function + (non-convex constraint function vs. convex constraint function)
- Solving linear systems of equations consists of block-diagonal part + small sparse part
- Solving PDEs by adding small perturbation terms and taking limits
- Semidefinite relaxation
- Simplification of a Quadratically constrained, Quadratic objective (to apply Semidefinite relaxation)
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
You have a function $f(\vec x)$ you wish to optimise, given some constraints $g_i(\vec x)=c_i$. Then you can write a Lagrangian $$L=f-\sum_i \lambda_i(g_i-c_i)$$Then to dualise this means to rewrite it as a problem where you optimise a function $F(\vec\lambda)=\sum_i\lambda_ic_i$, with respect to some constraints $G_i(\vec\lambda)=C_i$. When rewriting the problem like this, the components $x_i$ become the Lagrange multipliers for the Lagrangian for this dual problem.