Suppose we have a discrete-state discrete-time Markov Chain with n states. We know that this Markov chain has a unique steady-state distribution. If you additionally know that the transition matrix $P \in \mathbb{R}^{n \times n}$ is doubly stochastic, i.e., both its rows and columns sum to 1, then what is that unique stead-state distribution?
2025-01-14 23:54:31.1736898871
Steady state distributions
209 Views Asked by newbie https://math.techqa.club/user/newbie/detail At
1
There are 1 best solutions below
Related Questions in PROBABILITY-DISTRIBUTIONS
- Finding the value of a constant given a probability density function
- Lower bound for the cumulative distribution function on the left of the mean
- Linear Projection Property for a Logconcave CDF Class
- CDF of $Y=\max\{X_1, X_2, X_3\},$ given $f(x)=2,$ for $0<x<1/2$?
- exponential distribution involving customers
- Multi sample chi-square distribution
- Find the density function of a random variable
- Distribution of $Y$ derived from standard normal
- Help with understanding point from Nassim Taleb's book "Dynamic Hedging"
- Sampling without Replacement...Hypergeometric distribution
Related Questions in STOCHASTIC-PROCESSES
- Prove that: $E[\int^{\tau}_{0} f(t)d\omega(t)]=0$ and $E\mid \int^{\tau}_{0} f(t)d\omega(t)\mid^2=E[\int^{\tau}_{0} f^2(t)dt]$.
- Understanding the Fluid limit model in Queueing Theory
- Blackwell's example in Markov process theory and Kolmogorov's extension theorem
- Asymptotically unbiasedness of an weighted estimator
- Scaled limit of non-independent sequence of random variables
- Is there a better way to determine $E(X_{n+1}|X_{n})$ for this problem?
- Expectation of the product of two dependent binomial random variable
- Minimum distribution of random walk for $p > \frac{1}{2}$
- Compute Fourier Transform using conditional expectation
- Sigma algebra of cylinder events (stochastic processes)
Related Questions in STEADY-STATE
- Steady state distributions
- Phase diagram contradicts analytical results
- Steady state of a discrete difference equation
- Time to reach equilibrium in convection-diffusion
- What's the difference between indeterminacy and explosiveness in the context of dynamic systems?
- I could use some direction or help to see if I am on the right path for this problem.
- Application of PDE for solving steady state heat problem.
- Board game: steady state probability of being in starting location (GO)
- What is the steady state probability?
- Interpreting the reciprocal of the reproductive ratio, $R_0$
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Refuting the Anti-Cantor Cranks
- Find $E[XY|Y+Z=1 ]$
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- What are the Implications of having VΩ as a model for a theory?
- How do we know that the number $1$ is not equal to the number $-1$?
- Defining a Galois Field based on primitive element versus polynomial?
- Is computer science a branch of mathematics?
- Can't find the relationship between two columns of numbers. Please Help
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- A community project: prove (or disprove) that $\sum_{n\geq 1}\frac{\sin(2^n)}{n}$ is convergent
- Alternative way of expressing a quantied statement with "Some"
Popular # Hahtags
real-analysis
calculus
linear-algebra
probability
abstract-algebra
integration
sequences-and-series
combinatorics
general-topology
matrices
functional-analysis
complex-analysis
geometry
group-theory
algebra-precalculus
probability-theory
ordinary-differential-equations
limits
analysis
number-theory
measure-theory
elementary-number-theory
statistics
multivariable-calculus
functions
derivatives
discrete-mathematics
differential-geometry
inequality
trigonometry
Popular Questions
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- How to find mean and median from histogram
- Difference between "≈", "≃", and "≅"
- Easy way of memorizing values of sine, cosine, and tangent
- How to calculate the intersection of two planes?
- What does "∈" mean?
- If you roll a fair six sided die twice, what's the probability that you get the same number both times?
- Probability of getting exactly 2 heads in 3 coins tossed with order not important?
- Fourier transform for dummies
- Limit of $(1+ x/n)^n$ when $n$ tends to infinity
If we have a doubly stochastic matrix, then we know that its steady state distribution will follow the uniform distribution. In other words, if we have $n$ states, then the steady state distribution is given by
$$\pi = \left(\underbrace{\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}}_{n \text{ times}}\right). $$
A full proof is provided here: Help showing aMarkov chain with a doubly-stochastic matrix has uniform limiting distribution