Is it true that any étale map of affine schemes is a composition of finitely many finite étale maps and Zariski localizations?
2026-02-22 21:57:02.1771797422
Structure of étale maps
241 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in ALGEBRAIC-GEOMETRY
- How to see line bundle on $\mathbb P^1$ intuitively?
- Jacobson radical = nilradical iff every open set of $\text{Spec}A$ contains a closed point.
- Is $ X \to \mathrm{CH}^i (X) $ covariant or contravariant?
- An irreducible $k$-scheme of finite type is "geometrically equidimensional".
- Global section of line bundle of degree 0
- Is there a variant of the implicit function theorem covering a branch of a curve around a singular point?
- Singular points of a curve
- Find Canonical equation of a Hyperbola
- Picard group of a fibration
- Finding a quartic with some prescribed multiplicities
Related Questions in COMMUTATIVE-ALGEBRA
- Jacobson radical = nilradical iff every open set of $\text{Spec}A$ contains a closed point.
- Extending a linear action to monomials of higher degree
- Tensor product commutes with infinite products
- Example of simple modules
- Describe explicitly a minimal free resolution
- Ideals of $k[[x,y]]$
- $k[[x,y]]/I$ is a Gorenstein ring implies that $I$ is generated by 2 elements
- There is no ring map $\mathbb C[x] \to \mathbb C[x]$ swapping the prime ideals $(x-1)$ and $(x)$
- Inclusions in tensor products
- Principal Ideal Ring which is not Integral
Related Questions in ARITHMETIC-GEOMETRY
- Showing that a Severi-Brauer Variety with a point is trivial
- Definition of scheme defined over a ring A
- Galois representation on Tate module of a twist of an elliptic curve
- What is the difference between algebraic number theory, arithmetic geometry and diophantine geometry?
- Questions about Zeta Function of Singular Plane Curve
- Brauer group of global fields
- Structure of étale maps
- Unipotent Groups and Torsors
- why is multiplication by n surjective on an abelian variety
- Poincare duality compatible with the definition of compactly supported cohomology in etale cohomology?
Related Questions in ETALE-COHOMOLOGY
- Structure of étale maps
- Clarification about Milne's Etale Cohomology text
- Open normal subgroups of Galois
- Surjectivity of map of étale sheaves
- Twists of etale cohomology
- Long exact sequence in etale cohomology with support
- Cycle class map and generalisation of Kummer theory
- How to compute $H^i_{\operatorname{fppf}}(\mathbb{P}^1,\alpha_p)$?
- Soulé vanishing for $H^2$ of $\mathbb{Q}_p(n)$
- Galois cover ramified at some points
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
This is a good question! The answer is, I think, no. As étale maps are open, one can assume the map $f: X \to Y$ to be surjective. One can then construct an affine scheme $\bar{X}$ containing $X$ as open subscheme together with a finite morphism $\bar{f}: \bar{X} \to Y$ which prolongs $f$ - however there is no reason for $\bar{f}$ to be étale at $\bar{X}\setminus X$.
This guides us in finding a counterexample: Consider the map of rings $$\mathbb{C}[T] \to \mathbb{C}[T,T^{-1}], \ T \mapsto T^2(T-1)$$ and the corresponding scheme morphism $$f:\mathbb{A}^1 \setminus \{0\} \to \mathbb{A}^1.$$ It is easy to see that this morphism is étale but not finite.
I'm a bit sketchy on proving precisely that this can't be factored, but I think one can make the following precise: The morphism has prime degree, so we should factor it either as $\bar{f} \circ g$ or $g \circ \bar{f}$ where $\bar{f}$ is finite étale and $g$ is a Zariski-immersion. As $f$ is surjective, the latter can't happen, so we need to exclude the first possibility. This can be done analytically, where standard arguments about Riemann surfaces show that the only possible factorization corresponds to $$\mathbb{A}^1 \setminus \{0\} \to \mathbb{A}^1 \to \mathbb{A}^1$$ where the first map is the inclusion, the second given by $z \mapsto z(z^2-1)$. However the second map is not étale at the origin.