Let $F$ be a field, $p(x)\in F[x]$. If $p(x)=0$, then $F[x]/\langle p(x)\rangle=F[x]/\langle 0\rangle=\bigl\{\{a\}\mid a\in F[x]\bigr\}$, a set of sets of one element. If $\deg p(x)=0$, then $F[x]/\langle p(x)\rangle=\{F[x]\}$, a set with one element. Am I correct? And if $\deg p(x)\geq1$, under what circumstances will $F[x]/\langle p(x)\rangle$strictly larger than $F$ (view $F$ as the isomorphic copy in it)?
2026-02-22 19:55:18.1771790118
Studying the $F[x]/\langle p(x)\rangle$ when $p(x)$ is any degree.
38 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtRelated Questions in ABSTRACT-ALGEBRA
- Feel lost in the scheme of the reducibility of polynomials over $\Bbb Z$ or $\Bbb Q$
- Integral Domain and Degree of Polynomials in $R[X]$
- Fixed points of automorphisms of $\mathbb{Q}(\zeta)$
- Group with order $pq$ has subgroups of order $p$ and $q$
- A commutative ring is prime if and only if it is a domain.
- Conjugacy class formula
- Find gcd and invertible elements of a ring.
- Extending a linear action to monomials of higher degree
- polynomial remainder theorem proof, is it legit?
- $(2,1+\sqrt{-5}) \not \cong \mathbb{Z}[\sqrt{-5}]$ as $\mathbb{Z}[\sqrt{-5}]$-module
Related Questions in FIELD-THEORY
- Square classes of a real closed field
- Question about existence of Galois extension
- Proving addition is associative in $\mathbb{R}$
- Two minor questions about a transcendental number over $\Bbb Q$
- Is it possible for an infinite field that does not contain a subfield isomorphic to $\Bbb Q$?
- Proving that the fraction field of a $k[x,y]/(f)$ is isomorphic to $k(t)$
- Finding a generator of GF(16)*
- Operator notation for arbitrary fields
- Studying the $F[x]/\langle p(x)\rangle$ when $p(x)$ is any degree.
- Proof of normal basis theorem for finite fields
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?