I'm trying to come up with a bijection between $\mathbb{R}$ and a complete totally ordered field $F$. Bearing in mind that $F$ is arbitrary, is it still OK to use operators such as $+$, $-$, $\cdot$, $/$ and $\sum$ on elements of $F$, and have it be understood from context that these are supposed to be $F$'s operators?
2026-02-22 19:45:40.1771789540
Operator notation for arbitrary fields
62 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in FIELD-THEORY
- Square classes of a real closed field
- Question about existence of Galois extension
- Proving addition is associative in $\mathbb{R}$
- Two minor questions about a transcendental number over $\Bbb Q$
- Is it possible for an infinite field that does not contain a subfield isomorphic to $\Bbb Q$?
- Proving that the fraction field of a $k[x,y]/(f)$ is isomorphic to $k(t)$
- Finding a generator of GF(16)*
- Operator notation for arbitrary fields
- Studying the $F[x]/\langle p(x)\rangle$ when $p(x)$ is any degree.
- Proof of normal basis theorem for finite fields
Related Questions in NOTATION
- Symbol for assignment of a truth-value?
- Does approximation usually exclude equality?
- Is division inherently the last operation when using fraction notation or is the order of operation always PEMDAS?
- Question about notation $S^c$
- strange partial integration
- What does Kx mean in this equation? [in Carnap or Russell and Whitehead's logical notation]
- Need help with notation. Is this lower dot an operation?
- What does this "\" mathematics symbol mean?
- Why a set or vector start counting from a negative or zero index?
- How to express a sentence having two for all?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Provided that it's clear from context whenever you write $x+y$ which field $x$ and $y$ come from, then it's clear which field $+$ belongs to, so it's fine. (And similar for other operators.)