Consider the infinite series $\; \displaystyle \sum_{n=0}^{\infty} \left(\frac{1}{ 4}\right)^{\!n/2}.$
Find the sum of this series.
Formula for calculating sum of the series is:
$$\frac{a}{1 - r}$$
Where Riemann sum must either look as:
$\sum_{n=0}^{\infty} a \cdot r^n\;\;$ or $\;\;\; \sum_{n=1}^{\infty} a \cdot r^{n-1}$
So one way to figure out this problem is to rewrite the given Riemann sum as two sums, one for even and the other for odd n.
Edit: Kind of like this:
$\sum (\frac{1}{4})^n + \sum \frac{1}{2} \cdot (\frac{1}{4})^{\frac{2n}{2}} $
For even, standard is 2k, for odd just simply 2k + 1.
In my case there's fraction involved in the exponent, so I get:
$\sum (\frac{1}{4})^{2n}{2} + \sum (\frac{1}{4})^{ \frac{2n +1}{2}}$ ->
$\sum (\frac{1}{4})^{2n}{2} + \sum (\frac{1}{4})^{ \frac{2n}{2} + \frac{1}{2}}$ ->
$\sum (\frac{1}{4})^n + \sum (\frac{1}{4})^{ \frac{2n}{2}} \cdot (\frac{1}{4})^{ \frac{1}{2}} $
Alternately use index laws:
$$\sum_{n=0}^{\infty} \left(\frac{1}{ 4}\right)^{\frac{n}{2}}=\sum_{n=0}^{\infty} \left(\left(\frac{1}{ 4}\right)^{\frac{1}{2}}\right)^n$$ $$=\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n$$