I'm trying to learn linear algebra on my own but I am stuck on the definition of a linear subspace.
Let's assume I want to find out if $S$ is a subspace of $\mathbb{R}^2$, where $ S = [X_1 , X_2] $ and $ X_1 > 0 $.
$S$ would not be a subspace since it violates rule 3 of the definition. A negative one times the entire matrix would produce a vector that is not in the subspace.
But I would say it is quite obvious that the area where X is positive is a SUBSPACE of $\mathbb{R}^2$? It seems intuitive.
Why did mathematicians choose the three rules they chose? What's the motivation?
I think the fact that you find intuitive is that the set $\{(x_1,x_2):x_1>0\}$ is a subset of $\mathbb{R}^2$. This is certainly correct: every element of the former set is also an element of the latter.
But being a subspace means more than just being a subset. In addition, it requires the subset to possess the same kind of structure that the larger space does: in particular, to be closed under scalar multiplication. The half-plane fails this requirement.
The motivation for insisting on this is that when we want to do linear algebra, we need things to be linear spaces. An arbitrary subset of a linear space, like, say, a Cantor set, has nothing to do with linear algebra methods, so the definition is made to exclude such things.