I’m currently learning the bootstrap method, and I have two questions to ask about the definition of a bootstrap sample.
Let $ (\Omega,\mathscr{S},\mathsf{P}) $ be a probability space. Let $ X_{1},\ldots,X_{n} $ be i.i.d. random variables on $ (\Omega,\mathscr{S},\mathsf{P}) $, with their common c.d.f. denoted by $ F $. Let $ \hat{F} $ denote the empirical c.d.f. of $ X_{1},\ldots,X_{n} $, i.e., $$ \forall x \in \mathbf{R}: \qquad \hat{F}(x) = \frac{1}{n} \sum_{i = 1}^{n} \chi_{(- \infty,x]} \circ X_{i}. $$ Clearly, $ \hat{F}(x) $ is a random variable on $ (\Omega,\mathscr{S},\mathsf{P}) $ for each $ x \in \mathbf{R} $, and for each $ \omega \in \Omega $, the function $$ \left\{ \begin{matrix} \mathbf{R} & \to & [0,1] \\ x & \mapsto & \left[ \hat{F}(x) \right] \! (\omega)\end{matrix} \right\} $$ is the c.d.f. of some discrete random variable.
Question 1: What does it mean to say that $ (X_{1}^{*},\ldots,X_{n}^{*}) $ is a bootstrap sample drawn from $ \hat{F} $? As mentioned, $ \hat{F}(x) $ is not a number but a random variable for each $ x \in \mathbf{R} $. I require an answer to this question strictly in terms of measure theory.
Question 2: What probability space are $ X_{1}^{*},\ldots,X_{n}^{*} $ defined on? Is it still $ (\Omega,\mathscr{S},\mathsf{P}) $?
Thanks!
I’ve managed to answer my questions. In what follows, we fix $ n \in \mathbf{N} $ and denote $ \mathbf{N}_{\leq n} $ by $ [n] $.
Let $ \mathcal{R} $ denote the set of random variables defined on the probability space $ ([n]^{n},\mathcal{P}([n]^{n}),\mathsf{c}) $, where $ \mathsf{c} $ denotes the probability measure on $ ([n]^{n},\mathcal{P}([n]^{n})) $ having a mass of $ \dfrac{1}{n^{n}} $ at every element of $ [n]^{n} $. Then $ X_{1}^{\ast},\ldots,X_{n}^{\ast} $ are $ \mathcal{R} $-valued functions on $ \Omega $ such that for any $ i \in [n] $ and $ \omega \in \Omega $, the following conditions hold:
One can easily verify that for each $ \omega \in \Omega $, the c.d.f. of $ {X_{i}^{\ast}}(\omega) $ for any $ i \in [n] $ is precisely $ \left[ \hat{F}(\cdot) \right] \! (\omega) $.
If $ \displaystyle \bar{X} \stackrel{\text{df}}{=} \frac{1}{n} \sum_{i = 1}^{n} X_{i} $ and $ \displaystyle \bar{X}^{\ast} \stackrel{\text{df}}{=} \frac{1}{n} \sum_{i = 1}^{n} X_{i}^{\ast} $, then $ \bar{X}^{\ast} - \bar{X} $ is to be interpreted as an $ \mathcal{R} $-valued function on $ \Omega $, i.e., $$ \forall \omega \in \Omega: \qquad \left( \bar{X}^{\ast} - \bar{X} \right) \! (\omega) = \frac{1}{n} \sum_{i = 1}^{n} {X_{i}^{\ast}}(\omega) - \underbrace{\frac{1}{n} \sum_{i = 1}^{n} {X_{i}}(\omega)}_{(\star)}, $$ where the term $ (\star) $ is viewed as a constant random variable on $ ([n]^{n},\mathcal{P}([n]^{n}),\mathsf{c}) $.