For $r′ < r$, show that $|X|^{r′} \leq 1 + |X|^r$ and conclude that if $E[|X|^r] < \infty$, then $E[|X|^{r′}]<\infty$ for all 0 < r′ < r.
enter link description here page 111
I tried to solve this by the Basic Properties of the Expectation of an R.V we have
If E|X|r < ∞ for some r > 0, where X is an r.v., then E|X|r′< ∞ for all 0 < r′ < r
This is a consequence of the obvious inequality |X|r′ ≤ 1 + |X|r
could any one help me please
Hint for the inequality $|X|^{r'} \le 1+ |X|^r$ for all $1 \le r' \le r$:
Consider $|X|^{r'} = |X|^{r'} \mathbf{1}_{\{|X|^{r'} \le 1\}} + |X|^{r'} \mathbf{1}_{\{|X|^{r'}>1\}}$.
And consider the function $y \mapsto x^y$ for $x \in [0,\infty]$.