Let $X=\{0,1\}^{\mathbb{N}}$. For $x=x_1x_2x_3\cdots$ and $y=y_1y_2y_3\cdots$ in $X$, define \begin{align*} d(x,y)=2^{-\textrm{min}\{n\in \mathbb{N}:x_n\neq y_n \}} \end{align*}
I showed that $(X,d)$ is a metric space.
I want to show that the topology generated by the metric $d$ is the product topology of discrete space $\{0,1\}$.
I thought that this problem is associated with bases..
Any help is appreicated!!
Thank you!
A basis for the topology induced by the metric $d$ is the family of all open balls $B\left((x_n)_n, 2^{-m}\right)$ for $m \in \mathbb{N}$.
A basis for the product topology of discrete spaces is $$\{x_1\} \times \{x_2\} \times\cdots \times \{x_m\} \times \{0,1\} \times \{0,1\} \times \cdots$$
for some $x_1, \ldots, x_m \in \{0,1\}$ and $m \in \mathbb{N}$.
Those two basis are in fact the same:
\begin{align} (y_n)_n \in B\left((x_n)_n, 2^{-m}\right) &\iff d\left((x_n)_n, (y_n)_n\right) < 2^{-m}\\ &\iff 2^{-\min\{n\in\mathbb{N} : x_n \ne y_n\}} < 2^{-m}\\ &\iff \min\{n\in\mathbb{N} : x_n \ne y_n\} > m\\ &\iff x_n = y_n \,\text{for all } n = 1, \ldots, m\\ &\iff (y_n)_n \in \{x_1\} \times \{x_2\} \times\cdots \times \{x_{m}\} \times \{0,1\} \times \{0,1\} \times \cdots \end{align}
Therefore, the two topologies are equal.