I want to prove thtat there is no smooth diffeomorphism $f:\mathbb R^3 \setminus [-\frac{1}{2}, \frac{1}{2}]^3 \to \mathbb R^3$.
Attempt:
I have seen a lot about $\mathbb R^3 \setminus \{0\}$, I don't know if here it works the same way, since the hole is of similar type, but not just one point.
We know that the second de Rham cohomology group of $\mathbb R^3$ vanishes: $$H^2(\mathbb R^3) = \{0\}.$$
However, take the $2$-form $\omega $ defined by $$\omega_{(x,y,z)} := \frac{x\, dy \wedge dz + y \,dz\wedge dx + z \,dx\wedge dy}{(x^2+y^2+z^3)^{3/2}}$$
It is a quick calculation that $\omega$ is closed, i.e. $\omega \in Z^2(\mathbb R^3\setminus[-\frac{1}{2}, \frac{1}{2}]^3). $ But since $$\int_{S^2} \omega = 4\pi \neq 0,$$
$\omega$ is not exact ($[-\frac{1}{2}, \frac{1}{2}]^3 \subseteq B_1(0)$). Now if there was a smooth diffeomorphism $f$, $\omega$ pullbacked with $f^{-1}$ would be a non-exact form too since the cohomology classes are the same. Is this correct?
2026-02-22 19:34:08.1771788848
There is no smooth diffeomorphism $f:\mathbb R^3 \setminus [-\frac{1}{2}, \frac{1}{2}]^3 \to \mathbb R^3$
103 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in REAL-ANALYSIS
- how is my proof on equinumerous sets
- Finding radius of convergence $\sum _{n=0}^{}(2+(-1)^n)^nz^n$
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Justify an approximation of $\sum_{n=1}^\infty G_n/\binom{\frac{n}{2}+\frac{1}{2}}{\frac{n}{2}}$, where $G_n$ denotes the Gregory coefficients
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Is this relating to continuous functions conjecture correct?
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Absolutely continuous functions are dense in $L^1$
- A particular exercise on convergence of recursive sequence
Related Questions in INTEGRATION
- How can I prove that $\int_0^{\frac{\pi}{2}}\frac{\ln(1+\cos(\alpha)\cos(x))}{\cos(x)}dx=\frac{1}{2}\left(\frac{\pi^2}{4}-\alpha^2\right)$?
- How to integrate $\int_{0}^{t}{\frac{\cos u}{\cosh^2 u}du}$?
- Show that $x\longmapsto \int_{\mathbb R^n}\frac{f(y)}{|x-y|^{n-\alpha }}dy$ is integrable.
- How to find the unit tangent vector of a curve in R^3
- multiplying the integrands in an inequality of integrals with same limits
- Closed form of integration
- Proving smoothness for a sequence of functions.
- Random variables in integrals, how to analyze?
- derive the expectation of exponential function $e^{-\left\Vert \mathbf{x} - V\mathbf{x}+\mathbf{a}\right\Vert^2}$ or its upper bound
- Which type of Riemann Sum is the most accurate?
Related Questions in DIFFERENTIAL-GEOMETRY
- Smooth Principal Bundle from continuous transition functions?
- Compute Thom and Euler class
- Holonomy bundle is a covering space
- Alternative definition for characteristic foliation of a surface
- Studying regular space curves when restricted to two differentiable functions
- What kind of curvature does a cylinder have?
- A new type of curvature multivector for surfaces?
- Regular surfaces with boundary and $C^1$ domains
- Show that two isometries induce the same linear mapping
- geodesic of infinite length without self-intersections
Related Questions in DIFFERENTIAL-FORMS
- Using the calculus of one forms prove this identity
- Relation between Fubini-Study metric and curvature
- Integration of one-form
- Time derivative of a pullback of a time-dependent 2-form
- Elliptic Curve and Differential Form Determine Weierstrass Equation
- I want the pullback of a non-closed 1-form to be closed. Is that possible?
- How to find 1-form for Stokes' Theorem?
- Verify the statement about external derivative.
- Understanding time-dependent forms
- form value on a vector field
Related Questions in DE-RHAM-COHOMOLOGY
- DeRham Cohomology of punctured plane and homotopy.
- Chern-Weil homomorphism and Chern/Pontryagin/Euler class
- Finite dimensionality of the "deRham cohomology" defined using $C^{k,\alpha}$ forms instead of smooth forms.
- Averaging of a differential form.
- De Rham cohomology groups of projective real space
- Homotopy invariance of de Rham cohomology
- The Converse of Poincare Lemma
- How does one introduce characteristic classes
- There is no smooth diffeomorphism $f:\mathbb R^3 \setminus [-\frac{1}{2}, \frac{1}{2}]^3 \to \mathbb R^3$
- Why $H_{dR}^1(M) \simeq \mathbb R^n$ when $H_1(M,\mathbb Z)$ has $n$ generators?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
I'll elaborate my comment into an answer since it's getting longer.
Yes, you're right. The space you're considering, let's call it $A$, is homeomorphic to $\Bbb R^3 \setminus \{ 0\}$, hence no homeomorphism exists between $A$ and $\Bbb R^3$. This also implies that there is no diffeomorphism between these two spaces.
Exhibiting a 2-form like you did is also right, though what I was saying is that being the two spaces homotopically equivalent, their De Rham groups are going to be isomorphic.