We have the following:
$$\alpha_1:P_1\rightarrow M$$
$$\alpha_2:P_2\rightarrow M$$
with $\alpha_1,\alpha_2$ surjective, and $P_1,P_2$ projective. Prove $$P_1\oplus \ker(\alpha_2) \cong P_2\oplus \ker(\alpha_1).$$
I don't know what properties of projective modules I should use.