Suppose we have a self-adjoint operator on a separable Hilbert space $H$ such that there exist $n>1$ that $T^n=1$ on $\mathrm{Dom}(T^n)$. Does it mean that $T$ is bounded ? If not, what are the minimal assumptions that implies this ?
2026-02-22 23:05:27.1771801527
Unbounded self-adjoint "nth-root"operators
72 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in FUNCTIONAL-ANALYSIS
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Why is necessary ask $F$ to be infinite in order to obtain: $ f(v)=0$ for all $ f\in V^* \implies v=0 $
- Prove or disprove the following inequality
- Unbounded linear operator, projection from graph not open
- $\| (I-T)^{-1}|_{\ker(I-T)^\perp} \| \geq 1$ for all compact operator $T$ in an infinite dimensional Hilbert space
- Elementary question on continuity and locally square integrability of a function
- Bijection between $\Delta(A)$ and $\mathrm{Max}(A)$
- Exercise 1.105 of Megginson's "An Introduction to Banach Space Theory"
- Reference request for a lemma on the expected value of Hermitian polynomials of Gaussian random variables.
- If $A$ generates the $C_0$-semigroup $\{T_t;t\ge0\}$, then $Au=f \Rightarrow u=-\int_0^\infty T_t f dt$?
Related Questions in OPERATOR-THEORY
- $\| (I-T)^{-1}|_{\ker(I-T)^\perp} \| \geq 1$ for all compact operator $T$ in an infinite dimensional Hilbert space
- Confusion about relationship between operator $K$-theory and topological $K$-theory
- Definition of matrix valued smooth function
- hyponormal operators
- a positive matrix of operators
- If $S=(S_1,S_2)$ hyponormal, why $S_1$ and $S_2$ are hyponormal?
- Closed kernel of a operator.
- Why is $\lambda\mapsto(\lambda\textbf{1}-T)^{-1}$ analytic on $\rho(T)$?
- Show that a sequence of operators converges strongly to $I$ but not by norm.
- Is the dot product a symmetric or anti-symmetric operator?
Related Questions in HILBERT-SPACES
- $\| (I-T)^{-1}|_{\ker(I-T)^\perp} \| \geq 1$ for all compact operator $T$ in an infinite dimensional Hilbert space
- hyponormal operators
- a positive matrix of operators
- If $S=(S_1,S_2)$ hyponormal, why $S_1$ and $S_2$ are hyponormal?
- Is the cartesian product of two Hilbert spaces a Hilbert space?
- Show that $ Tf $ is continuous and measurable on a Hilbert space $H=L_2((0,\infty))$
- Kernel functions for vectors in discrete spaces
- The space $D(A^\infty)$
- Show that $Tf$ is well-defined and is continious
- construction of a sequence in a complex Hilbert space which fulfills some specific properties
Related Questions in UNBOUNDED-OPERATORS
- Example of unbounded operator with a given property
- Unbounded self-adjoint "nth-root"operators
- Operator with compact resolvent
- Norm and boundedness of a linear operator
- Why are we interested in determining the spectrum?
- Unbounded Operator in Hilbert Space
- Can I write $\mathcal H: \{c_n\} \to \{(n+\frac{1}{2})c_n\}$ as $H=\operatorname{diag}(\frac{1}{2}, 1 +\frac{1}{2}, 2+\frac{1}{2}, ...) $?
- Unbounded injective linear operator
- Existence of a function satisfying zero boundary conditions for fractional Laplacian (1d)
- A problem on dual spaces
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
The operator $T$ would be closed and densely-defined to qualify as selfadjoint. If $T^n=I$ on $\mathcal{D}(T^n)$, then the following holds on $\mathcal{D}(T^n)$, which is a dense subspace for any selfadjoint $T$: $$ (1-\lambda^n)I=T^n - \lambda^n I = (T-\lambda I)(T^{n-1}+\lambda T^{n-2}+\cdots + \lambda^{n-1}I). $$ Because $T$ is selfadjont, then $T-\lambda I$ is invertible for non-real $\lambda$, and the resolvent $R(\lambda)=(T-\lambda I)^{-1}$ must satisfy $$ (1-\lambda^n)R(\lambda)=T^{n-1}+\lambda T^{n-2}+\cdots +\lambda^{n-1}I, \;\; \mbox{on}\; \mathcal{D}(T^n). $$ Differentiating $n-2$ times gives $$ \frac{d^{n-2}}{d\lambda^{n-2}}((1-\lambda^n)R(\lambda)x)=(n-2)!Tx+\lambda(n-1)!x,\;\;\; x\in\mathcal{D}(T^{n}). $$ The left side is a bounded operator for any non-real $\lambda$ because the resolvent and all of its derivatives are bounded operators. So $T$ is bounded on $\mathcal{D}(T^n)$. Because $T$ is closed and densely-defined, then $T$ is bounded with domain $H$.