Understanding the proof of $\text{Theorem (8.1.7)}$ in Greene's Function Theory of One Complex Varible?

49 Views Asked by At

In the text "Functions of One Complex Variable" by Steven G. Krantz and Robert E. Greene on (Pg.260) I'm having trouble understanding the proof to $\text{Theorem (8.1.7)}$ specifically how the author constructed the bounds in $(2)$ and $(3)$ utilizing $\text{Lemma (8.1.6)}$ ?

$\text{Theorem (8.1.7)}$

If the infinite product $$\prod_{j=1}^{\infty}(1+|a_{j}|)$$

converges so then

$$\prod_{j=1}^{\infty}(1+a_{j})$$

$\text{Lemma (8.1.6)}$

Let $a_{j} \in \mathbb{C}$ Set

$$P_{N}=\prod_{j=1}^{N}(1+a_{j}), \, \, \, \, \, \, \, \, \, \overline P_{N}=\prod_{j=1}^{N}(1+|a_{j}|)$$

Then $|P_{N}-1| \leq \overline P_{N}-1$

$\text{Proof of Theorem (8.1.7)}$

For some $N_{0}$ it holds that $a_{j} \neq 1$ if $j > N_{0}$. One can write for $J > N_{0}$, in $(1)$

$(1)$ $$Q_{j}=\prod_{j=N_{0}+1}^{J}(1+a_{j}) \, \, \text{and} \, \, \overline Q_{j}=\prod_{j=N_{0}+1}^{J}(1+|a_{j}|).$$

If $M > N > N_{0}$, then in $(2)$

$(2)$

$$|Q_{M}-Q_{N}| = |Q_{N}| \cdot \bigg | \prod_{j=N+1}^{M}(1 + |a_{j}|)) \leq |Q_{N}| \bigg | \prod_{j = N+1}^{M}(1+|a_{j}| - 1 \bigg |.$$

Utilizing $\text{Lemma (8.1.6)}$, I made the conclusion in $(3)$

$(3)$

$$|\overline Q_{M}- \overline Q_{N}| = |\overline Q_{N}| \cdot \bigg | \prod_{j=N+1}^{M}(1 + |a_{j}|) \leq |\overline Q_{N}| \bigg | \prod_{j = N+1}^{M}(1+a_{j}) - 1 )\bigg |.$$

1

There are 1 best solutions below

4
On BEST ANSWER

You will have \begin{align*} |Q_{M}-Q_{N}|& = \bigg | Q_{N}\Big(\prod_{j=N+1}^{M}(1 + a_{j})-1\Big) \bigg | \\ & = |Q_{N}| \bigg | \prod_{j=N+1}^{M}(1 + a_{j})-1 \bigg |\\ &\leq |Q_{N}| \bigg | \prod_{j = N+1}^{M}(1+|a_{j}|) - 1 \bigg |\tag{using the lemma} \end{align*}