I want to prove that$$\lim_{s\to1}\zeta(s)-\log\prod_{n=1}^\infty(1+n^{-s})=\gamma$$
I know that for $|s|>0$, $\log(1+n^{-s})=\sum_{k=1}^\infty (-1)^{k+1}\frac{n^{-sk}}{k}$
So $$\log\prod_{n=1}^\infty(1+n^{-s})=\sum_{n=1}^\infty\sum_{k=1}^\infty(-1)^{k+1}\frac{n^{-sk}}{k}$$
If I switch the sums: $$\log\prod_{n=1}^\infty(1+n^{-s})=\sum_{k=1}^\infty\frac{(-1)^{k+1}}{k}\sum_{n=1}^\infty n^{-sk}=\sum_{k=1}^\infty\frac{(-1)^{k+1}\zeta(ks)}{k}$$
The rest follows from $$\gamma=\sum_{k=2}^\infty\frac{(-1)^k\zeta(k)}{k}$$
My question is if there are any Theorems or any other proof for the justification of switching the sums?
It is easy to justify the interchange of the sums. Use the following: $\sum n^{-k/2} \leq \int _1 ^{\infty} x^{-k/2} dx =\frac 1 {k/2 -1}$ for $k>3$ and $\sum \frac 1 {k(k/2-1)} < \infty$. Hence the double sum is absolutely convergent which allows us to interchange the order of summation.