Let $v_1,v_2,v_3\in \mathbb{R}^2$ (view as column vectors), if we have $$\lambda_{\min}(v_iv_i^T+v_jv_j^T)\le 1,~\text{for all }i\not=j\in\{1,2,3\}.$$
Can we have an upper bound for $$\lambda_{\min}(v_1v_1^T+v_2v_2^T+v_3v_3^T).$$
I guess it will be upper bounded by $3$ but have not idea how to prove it. Any idea will be appreciate.
When $u_1 = [-\frac{\sqrt{2}}{2}, \ \frac{\sqrt{6}}{2}]^T, \ u_2 = [\frac{\sqrt{2}}{2}, \ \frac{\sqrt{6}}{2}]^T, \ u_3 = [\sqrt{2}, \ 0]^T$, we have $\lambda_{\min}(u_1u_1^T + u_2u_2^T) = \lambda_{\min}(u_1u_1^T + u_3u_3^T) = \lambda_{\min}(u_2u_2^T + u_3u_3^T) = 1$ and $\lambda_{\min}(u_1u_1^T + u_2u_2^T+u_3u_3^T) = 3$.
Next, let us prove that $\lambda_{\min}(u_1u_1^T + u_2u_2^T+u_3u_3^T)\le 3$.
If $\min(u_1^Tu_1, u_2^Tu_2, u_3^Tu_3)< 2$, WLOG, assume that $u_3^Tu_3 < 2$. Applying Weyl's inequality about perturbation, we have $\lambda_{\min}(u_1u_1^T + u_2u_2^T+u_3u_3^T) \le \lambda_{\min}(u_1u_1^T + u_2u_2^T) + u_3^Tu_3 < 3.$
In the following, assume that $u_1^Tu_1 \ge 2,\ u_2^Tu_2 \ge 2$ and $u_3^Tu_3 \ge 2$. WLOG, assume that $\lambda_{\min}(u_1u_1^T + u_3u_3^T) = 1$ and $\lambda_{\min}(u_2u_2^T + u_3u_3^T)= 1$ and $u_3 = [x, \ 0]^T$ (the reason is simple).
Let $u_1 = [a, \ b]^T, \ u_2 = [c, \ d]^T.$ We have $a^2+b^2\ge 2, \ c^2+d^2\ge 2$ and $x^2\ge 2$. We have $$\lambda_{\min}(u_1u_1^T + u_2u_2^T)\le 1 \Longrightarrow (a^2+b^2-1)(c^2+d^2-1) - a^2c^2 - b^2d^2 \le 2abcd, $$ $$\lambda_{\min}(u_1u_1^T + u_3u_3^T) = 1 \Longrightarrow (b^2-1)x^2 = a^2+b^2-1, $$ $$\lambda_{\min}(u_2u_2^T + u_3u_3^T)= 1 \Longrightarrow (d^2-1)x^2 = c^2+d^2 - 1. $$ We have $$\lambda_{\min}(u_1u_1^T + u_2u_2^T+u_3u_3^T) \le 3 \Longleftarrow (a^2+c^2+x^2-3)(b^2+d^2 - 3)-a^2b^2 - c^2d^2 \le 2abcd .$$ It suffices to prove that $(a^2+c^2+x^2-3)(b^2+d^2 - 3)-a^2b^2 - c^2d^2 \le 2abcd.$
If $b^2+d^2 \le 3$, clearly the inequality is true.
If $b^2+d^2 > 3$, noting that $(b^2+d^2-1)x^2 - 4 \ge 2x^2-4\ge 0$ and (simply applying the conditions above) \begin{align*} &(a^2+c^2+x^2-3)(b^2+d^2 - 3)-a^2b^2 - c^2d^2\\ =\ & (a^2+b^2-1)(c^2+d^2-1) - a^2c^2 - b^2d^2 - ((b^2+d^2-1)x^2 - 4)\\ \le\ & (a^2+b^2-1)(c^2+d^2-1) - a^2c^2 - b^2d^2\\ \le \ & 2abcd, \end{align*} the inequality is true.