Let $A$ and $B$ be Hermitian positive-definite matrices. I am looking for a perturbative expansion of $$ (A+\epsilon B)^{-1/2} $$ in orders of $\epsilon$. I suspect such an expansion is possible since for real $a,b$, $$ (a+\epsilon b)^{-1/2} = \frac{1}{\sqrt{a}}-\epsilon\frac{b}{2 a^{3/2}} + \epsilon^2\frac{3b^2}{8a^{5/2}} + \mathcal{O}(\epsilon^3) $$ It is not obvious to me how to derive an analogous result for matrices.
2026-02-22 21:00:23.1771794023
Perturbative expansion of an expression involving the matrix square root
494 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in LINEAR-ALGEBRA
- An underdetermined system derived for rotated coordinate system
- How to prove the following equality with matrix norm?
- Alternate basis for a subspace of $\mathcal P_3(\mathbb R)$?
- Why the derivative of $T(\gamma(s))$ is $T$ if this composition is not a linear transformation?
- Why is necessary ask $F$ to be infinite in order to obtain: $ f(v)=0$ for all $ f\in V^* \implies v=0 $
- I don't understand this $\left(\left[T\right]^B_C\right)^{-1}=\left[T^{-1}\right]^C_B$
- Summation in subsets
- $C=AB-BA$. If $CA=AC$, then $C$ is not invertible.
- Basis of span in $R^4$
- Prove if A is regular skew symmetric, I+A is regular (with obstacles)
Related Questions in MATRICES
- How to prove the following equality with matrix norm?
- I don't understand this $\left(\left[T\right]^B_C\right)^{-1}=\left[T^{-1}\right]^C_B$
- Powers of a simple matrix and Catalan numbers
- Gradient of Cost Function To Find Matrix Factorization
- Particular commutator matrix is strictly lower triangular, or at least annihilates last base vector
- Inverse of a triangular-by-block $3 \times 3$ matrix
- Form square matrix out of a non square matrix to calculate determinant
- Extending a linear action to monomials of higher degree
- Eiegenspectrum on subtracting a diagonal matrix
- For a $G$ a finite subgroup of $\mathbb{GL}_2(\mathbb{R})$ of rank $3$, show that $f^2 = \textrm{Id}$ for all $f \in G$
Related Questions in TAYLOR-EXPANSION
- Mc Laurin and his derivative.
- Maclaurin polynomial estimating $\sin 15°$
- why can we expand an expandable function for infinite?
- Solving a limit of $\frac{\ln(x)}{x-1}$ with taylor expansion
- How to I find the Taylor series of $\ln {\frac{|1-x|}{1+x^2}}$?
- Proving the binomial series for all real (complex) n using Taylor series
- Taylor series of multivariable functions problem
- Taylor series of $\frac{\cosh(t)-1}{\sinh(t)}$
- The dimension of formal series modulo $\sin(x)$
- Finding Sum of First Terms
Related Questions in MATRIX-CALCULUS
- How to compute derivative with respect to a matrix?
- Definition of matrix valued smooth function
- Is it possible in this case to calculate the derivative with matrix notation?
- Monoid but not a group
- Can it be proved that non-symmetric matrix $A$ will always have real eigen values?.
- Gradient of transpose of a vector.
- Gradient of integral of vector norm
- Real eigenvalues of a non-symmetric matrix $A$ ?.
- How to differentiate sum of matrix multiplication?
- Derivative of $\log(\det(X+X^T)/2 )$ with respect to $X$
Related Questions in PERTURBATION-THEORY
- Is there a book on the purely mathematical version of perturbation theory?
- Limit of a function ("order of magnitude")
- Unusual normalization related to the eigenvector perturbation
- How to expand $\sqrt{x+\epsilon}$ in the following way?
- Perturbative expansion of an expression involving the matrix square root
- Question on perturbation theory
- How to find roots by perturbation methods for this problem?
- Find perturbed eigenvalues, eigenvectors by perturbation methods
- rationalize denominator for perturbation theory
- Upper bound on smallest singular value with subset condition
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
cf. my answer in Derivative (or differential) of symmetric square root of a matrix
For $A$ symmetric $>0$ and $H$ small symmetric
$(A+H)^{-1/2}=A^{-1/2}-A^{-1/2}\int_0^{+\infty}e^{-t\sqrt{A}}He^{-t\sqrt{A}}dtA^{-1/2}+O(||H||^2)$
When $H=\epsilon B$ where $\epsilon$ is small and $B$ symmetric
$(A+\epsilon B)^{-1/2}=A^{-1/2}-\epsilon A^{-1/2}\int_0^{+\infty}e^{-t\sqrt{A}}Be^{-t\sqrt{A}}dtA^{-1/2}+O(\epsilon ^2)$