Is there a book on the purely mathematical version of perturbation theory, or all current references just in relation to applied fields like statistics and quantum mechanics? I remember first coming across this theory in my Quantum Mechanics class, and have been trying to late textbooks, video lectures on youtube, and articles detailing the pure mathematics of Perturbation Theory. However, all that came up were applied mathematical examples like solving the Schrodinger equation by making corrections to the bit we know in order to get as close as possible to finding the total Hamiltonian of the system.
2026-02-22 19:53:29.1771790009
Is there a book on the purely mathematical version of perturbation theory?
1.5k Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in REFERENCE-REQUEST
- Best book to study Lie group theory
- Alternative definition for characteristic foliation of a surface
- Transition from theory of PDEs to applied analysis and industrial problems and models with PDEs
- Random variables in integrals, how to analyze?
- Abstract Algebra Preparation
- Definition of matrix valued smooth function
- CLT for Martingales
- Almost locality of cubic spline interpolation
- Identify sequences from OEIS or the literature, or find examples of odd integers $n\geq 1$ satisfying these equations related to odd perfect numbers
- property of Lebesgue measure involving small intervals
Related Questions in QUANTUM-MECHANICS
- Is there a book on the purely mathematical version of perturbation theory?
- Matrix differential equation and matrix exponential
- "Good" Linear Combinations of a Perturbed Wave Function
- Necessary condition for Hermician lin operators
- What is a symplectic form of the rotation group SO(n)
- Why is $\textbf{J}$ called angular momentum?(Quantum)
- How does the quantumstate evolve?
- How to model this system of $^{238}\,U$ atoms?
- Discrete spectra of generators of compact Lie group
- Dirac Delta function identities
Related Questions in PERTURBATION-THEORY
- Limit of a function ("order of magnitude")
- Unusual normalization related to the eigenvector perturbation
- How to expand $\sqrt{x+\epsilon}$ in the following way?
- Perturbative expansion of an expression involving the matrix square root
- Question on perturbation theory
- How to find roots by perturbation methods for this problem?
- Find perturbed eigenvalues, eigenvectors by perturbation methods
- rationalize denominator for perturbation theory
- Solve recurrent ODE (elegantly?)
- Upper bound on smallest singular value with subset condition
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Having encountered perturbation theory for the first time in my physics lectures as well (and wondering what the mathematical underpinnings would be), I understand where you're coming from. Fortunately, there are quite a lot of books that treat perturbation theory from a mathematical viewpoint. I would take a look at the resources mentioned in this answer and/or this answer, which I'll quote here for clarity:
and