Find the value of $$ \iint_{\Sigma} \langle x, y^3, -z\rangle. d\vec{S} $$ where $ \Sigma $ is the sphere $ x^2 + y^2 + z^2 = 1 $ oriented outward by using the divergence theorem.
So I calculate $\operatorname{div}\vec{F} = 3y^2 $ and then I convert $ x, y, z $ into $ x = p\sin \phi \cos \theta, y = p\sin \phi \sin \theta, z = p\cos \phi $ but then I got stuck from that point.
You therefore want the volume integral
$$\iiint_V 3y^2 \ dV = \int_0^1 \int_0^{2\pi} \int_0^\pi 3(p\sin\phi \sin\theta)^2 . p^2 \sin\phi \ dp \ d\theta \ d\phi = \ \cdots$$
Since the volume of integration is a rectangular box in $(p,\theta, \phi)$ coordinates, you can separate out the integrating variables to make it easy to evaluate the overall integral.