If $(1+x+x^2+\cdots+x^9)^4(x+x^2+x^3+\cdots+x^9)=\sum_{r=1}^{45} a_rx^r ,$ then what is the value of $a_2+a_6+a_{10}+\cdots+a_{42}$
2026-02-22 20:10:06.1771791006
Value of $a_2+a_6+a_{10}+\cdots+a_{42}$
64 Views Asked by user497246 https://math.techqa.club/user/user497246/detail At
1
There are 1 best solutions below
Related Questions in SEQUENCES-AND-SERIES
- How to show that $k < m_1+2$?
- Justify an approximation of $\sum_{n=1}^\infty G_n/\binom{\frac{n}{2}+\frac{1}{2}}{\frac{n}{2}}$, where $G_n$ denotes the Gregory coefficients
- Negative Countdown
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Show that the sequence is bounded below 3
- A particular exercise on convergence of recursive sequence
- Proving whether function-series $f_n(x) = \frac{(-1)^nx}n$
- Powers of a simple matrix and Catalan numbers
- Convergence of a rational sequence to a irrational limit
- studying the convergence of a series:
Related Questions in ALGEBRA-PRECALCULUS
- How to show that $k < m_1+2$?
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Finding the value of cot 142.5°
- Why is the following $\frac{3^n}{3^{n+1}}$ equal to $\frac{1}{3}$?
- Extracting the S from formula
- Using trigonometric identities to simply the following expression $\tan\frac{\pi}{5} + 2\tan\frac{2\pi}{5}+ 4\cot\frac{4\pi}{5}=\cot\frac{\pi}{5}$
- Solving an equation involving binomial coefficients
- Is division inherently the last operation when using fraction notation or is the order of operation always PEMDAS?
- How is $\frac{\left(2\left(n+1\right)\right)!}{\left(n+1\right)!}\cdot \frac{n!}{\left(2n\right)!}$ simplified like that?
- How to solve algebraic equation
Related Questions in BINOMIAL-THEOREM
- Prove $\sum^{n}_{i=1}\binom{n}{i}i=n2^{n-1}$ using binomial and induction
- Use the binomial theorem to prove that for $n$ a positive integer the following holds
- Find sum of nasty series containing Binomial Coefficients
- Value of $a_2+a_6+a_{10}+\cdots+a_{42}$
- Definite sum for $(1+a)^n$
- How to prove $\sum_{r=1}^{n} r^{2}\binom {n} {r} = n(n+1)2^{n-2}$?
- Binomial Theorem Question $1+(1+x)+(1+x)^2+\dots+(1+x)^n$
- Distinct terms in a binomial expansion
- Limit of a sequence (binomial series and generating function for Catalan)
- How to show that inequality of a combinatoric series holds true
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Calling your expression $f(x)$, we have $$ a_2 + a_6 + \ldots + a_{42} = \dfrac{f(1) + f(-1) - f(i) - f(-i)}{4} $$ Now $f(1) = 9 \cdot 10^4$, $f(-1) = 0$, $f(i) = -4 i$ and $f(-i) = 4i$, so this is $(9 \cdot 10^4)/4 = 22500$.