If $G$ is a group and $H \leqslant G$ and $K \triangleleft G$, is $H \cap K \triangleleft G$? I think the intersection of $H$ and $K$ is a subgroup, and if $K \triangleleft G$ is $H\cap K \triangleleft G$ but I couldn't prove it. This is all I have done so far:
$\forall x \in H \cap K \land \forall g \in G \Rightarrow gxg^{-1} \in H \cap K$ ?
$x \in H \cap K \Rightarrow x \in H \land x\in K$
$x \in K \land g \in G \Rightarrow gxg^{-1} \in K$
but i couldn't show it
$x \in H \land g \in G \Rightarrow gxg^{-1} \in H$
Give me a hint please
No, $H\cap K$ might be not normal in $G$. For example take $G=D_4$, the dihedral group with $8$ elements. Letting $\rho$ be a rotation by angle $\frac{2\pi}{4}$ and $\epsilon$ any reflection we can take $K=\langle \rho^2,\epsilon\rangle\trianglelefteq G$ and $H=\langle \epsilon\rangle\leq G$. Then $H\cap K=\langle\epsilon\rangle$, and it is not normal in $D_4$.
That being said, $H\cap K$ is normal in $H$. Indeed, letting $h\in H, x\in H\cap K$ we have $hxh^{-1}\in H$ because it is a product of elements in $H$, and we have $hxh^{-1}\in K$ because $K$ is normal in $G$. So indeed $hxh^{-1}\in H$.