Let $(a_n)$ and $(b_n)$ be sequences of nonnegative numbers.
Suppose that $\sum_n a_n=+\infty$ and $\sum_n a_nb_n<+\infty$.
Then it can be shown that $\lim\inf_n b_n=0$.
My question is: What reference can you recommend that contains this and similar results?
2026-02-22 19:31:24.1771788684
A question on the liminf of a sequence
84 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in REAL-ANALYSIS
- how is my proof on equinumerous sets
- Finding radius of convergence $\sum _{n=0}^{}(2+(-1)^n)^nz^n$
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Justify an approximation of $\sum_{n=1}^\infty G_n/\binom{\frac{n}{2}+\frac{1}{2}}{\frac{n}{2}}$, where $G_n$ denotes the Gregory coefficients
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Is this relating to continuous functions conjecture correct?
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Absolutely continuous functions are dense in $L^1$
- A particular exercise on convergence of recursive sequence
Related Questions in SEQUENCES-AND-SERIES
- How to show that $k < m_1+2$?
- Justify an approximation of $\sum_{n=1}^\infty G_n/\binom{\frac{n}{2}+\frac{1}{2}}{\frac{n}{2}}$, where $G_n$ denotes the Gregory coefficients
- Negative Countdown
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Show that the sequence is bounded below 3
- A particular exercise on convergence of recursive sequence
- Proving whether function-series $f_n(x) = \frac{(-1)^nx}n$
- Powers of a simple matrix and Catalan numbers
- Convergence of a rational sequence to a irrational limit
- studying the convergence of a series:
Related Questions in REFERENCE-REQUEST
- Best book to study Lie group theory
- Alternative definition for characteristic foliation of a surface
- Transition from theory of PDEs to applied analysis and industrial problems and models with PDEs
- Random variables in integrals, how to analyze?
- Abstract Algebra Preparation
- Definition of matrix valued smooth function
- CLT for Martingales
- Almost locality of cubic spline interpolation
- Identify sequences from OEIS or the literature, or find examples of odd integers $n\geq 1$ satisfying these equations related to odd perfect numbers
- property of Lebesgue measure involving small intervals
Related Questions in LIMSUP-AND-LIMINF
- $\alpha$ is an irrational number. Is $\liminf_{n\rightarrow\infty}n\{ n\alpha\}$ always positive?
- Prove that $\lim_{n\to \infty} (a_1a_2\ldots a_n)^{\frac 1n} = L$ given that $\lim_{n\to \infty} (a_n) = L$
- Maximum and Minimum value of function -8x^2 -3 at interval (-inf, +inf)
- A question on the liminf of a sequence
- connection between $\limsup[a_n, b_n]$ and $[\limsup a_n, \limsup b_n]$
- Inferior limit when t decreases to 0
- Trying to figure out $\mu(\liminf_{n\to \infty}A_n) \le \liminf_{n\to \infty}\mu(A_n)$
- $\lim \sup_{t\rightarrow \infty} \frac{W_t}{\sqrt{t}}$ question
- If $(a_{n})_{n}$ is a bounded sequence, show that $\liminf_{n\to \infty}a_{n}\leq \liminf_{n\to \infty}\frac{a_{1}+a_{2}+\cdots +a_{n}}{n}$.
- Extrema of this sequence
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
The result follows because if $\liminf b_n > 0$ then $b_n > c > 0$ for all sufficiently large $n$ and, hence, $a_n b_n > c a_n$.
The underlying theorems (comparison test, etc.) are found in any standard analysis or advanced calculus book, but it is unlikely that this specific proposition would be displayed except, perhaps, as an exercise.
The insight for making the necessary connections could be gained through practice -- solving many problems in sequences and series. I would begin with one of the books that provide difficult practice problems with answers, such as Problems in Mathematical Analysis by Kaczor and Nowak or Problems and Theorems in Analysis by Polya and Szego.
Also classic references on sequences and series like Theory and Application of Infinite Series by Knopp contain many more theorems and lemmas than modern analysis books.
Addendum
Not inconsistent with what I said above, you will find this in a disguised form in Section II.9 of Theory of Infinite Series by Bromwich (1908 edition):
In short, you would be well served studying this book if you are interested in such results.