We know that $$\liminf_{n\rightarrow\infty}\ n\{ n\alpha\}=L\left(\alpha\right)$$ exists and $L\left(\alpha\right)\geq 0$.
Then, is the limit always greater than $0,\ \forall\alpha\in\mathbb{R}\setminus\mathbb{Q}$?
$\{n\alpha\}$ is the fractional part of $n\alpha$, i.e. $n\alpha-\left[n\alpha\right]$.
I know that there are infinitely many rational numbers $\frac{p}{q}$ satisfies $\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^2}$, but if $\frac{1}{q^2}$ is modified as $\frac{C}{q^k}$($C$ is a given constant), does there still exist infinitely many such rational numbers?
Moreover, what about the special cases $\alpha=\sqrt{2}$ or $\alpha=2^\frac{1}{4}$?
2026-02-22 19:35:40.1771788940
$\alpha$ is an irrational number. Is $\liminf_{n\rightarrow\infty}n\{ n\alpha\}$ always positive?
104 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtRelated Questions in ANALYSIS
- Analytical solution of a nonlinear ordinary differential equation
- Finding radius of convergence $\sum _{n=0}^{}(2+(-1)^n)^nz^n$
- Show that $d:\mathbb{C}\times\mathbb{C}\rightarrow[0,\infty[$ is a metric on $\mathbb{C}$.
- conformal mapping and rational function
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Proving whether function-series $f_n(x) = \frac{(-1)^nx}n$
- Elementary question on continuity and locally square integrability of a function
- Proving smoothness for a sequence of functions.
- How to prove that $E_P(\frac{dQ}{dP}|\mathcal{G})$ is not equal to $0$
- Integral of ratio of polynomial
Related Questions in IRRATIONAL-NUMBERS
- Convergence of a rational sequence to a irrational limit
- Is this : $\sqrt{3+\sqrt{2+\sqrt{3+\sqrt{2+\sqrt{\cdots}}}}}$ irrational number?
- ls $\sqrt{2}+\sqrt{3}$ the only sum of two irrational which close to $\pi$?
- Find an equation where all 'y' is always irrational for all integer values of x
- Is a irrational number still irrational when we apply some mapping to its decimal representation?
- Density of a real subset $A$ such that $\forall (a,b) \in A^2, \ \sqrt{ab} \in A$
- Proof of irrationality
- Is there an essential difference between Cartwright's and Niven's proofs of the irrationality of $\pi$?
- Where am I making a mistake in showing that countability isn't a thing?
- Ambiguity in Question!
Related Questions in LIMSUP-AND-LIMINF
- $\alpha$ is an irrational number. Is $\liminf_{n\rightarrow\infty}n\{ n\alpha\}$ always positive?
- Prove that $\lim_{n\to \infty} (a_1a_2\ldots a_n)^{\frac 1n} = L$ given that $\lim_{n\to \infty} (a_n) = L$
- Maximum and Minimum value of function -8x^2 -3 at interval (-inf, +inf)
- A question on the liminf of a sequence
- connection between $\limsup[a_n, b_n]$ and $[\limsup a_n, \limsup b_n]$
- Inferior limit when t decreases to 0
- Trying to figure out $\mu(\liminf_{n\to \infty}A_n) \le \liminf_{n\to \infty}\mu(A_n)$
- $\lim \sup_{t\rightarrow \infty} \frac{W_t}{\sqrt{t}}$ question
- If $(a_{n})_{n}$ is a bounded sequence, show that $\liminf_{n\to \infty}a_{n}\leq \liminf_{n\to \infty}\frac{a_{1}+a_{2}+\cdots +a_{n}}{n}$.
- Extrema of this sequence
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?