I want integrate: $$ \int \frac{1}{\sqrt{|x|}} \, dx $$ so I divide for two cases $$ x>0 \Rightarrow \int \frac{1}{\sqrt{x}} \, dx= 2\sqrt{x}+c $$
$$ x<0 \Rightarrow \int \frac{1}{\sqrt{-x}} \, dx= -2\sqrt{-x}+c $$ But WolframAlpha gives: $$ \int \frac{1}{\sqrt{|x|}} \, dx=\left(\sqrt{-x}+\sqrt{x} \right)\operatorname{sgn}(x)-\sqrt{-x}+\sqrt{x} +c $$ How I can interpret this result? Maybe I'm wrong?
Using $\operatorname{sgn}(x)$ is just a (half-dirty) trick to put the two cases into one. Put in $-1$ vs. $+1$ for $\operatorname{sgn}(x)$ and your eyes will be open.