Let $X$ be a Banach space over $\mathbb{C}$ and $T \colon X \to X$ be a conjugate linear map. If the graph $G(T)= \{ (x,Tx) \mid x\in X \}$ of $T$ is closed in $X\times X$, is $T$ continuous?
2026-02-22 23:23:49.1771802629
About Closed Graph Theorem for conjugate linear map
52 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in FUNCTIONAL-ANALYSIS
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Why is necessary ask $F$ to be infinite in order to obtain: $ f(v)=0$ for all $ f\in V^* \implies v=0 $
- Prove or disprove the following inequality
- Unbounded linear operator, projection from graph not open
- $\| (I-T)^{-1}|_{\ker(I-T)^\perp} \| \geq 1$ for all compact operator $T$ in an infinite dimensional Hilbert space
- Elementary question on continuity and locally square integrability of a function
- Bijection between $\Delta(A)$ and $\mathrm{Max}(A)$
- Exercise 1.105 of Megginson's "An Introduction to Banach Space Theory"
- Reference request for a lemma on the expected value of Hermitian polynomials of Gaussian random variables.
- If $A$ generates the $C_0$-semigroup $\{T_t;t\ge0\}$, then $Au=f \Rightarrow u=-\int_0^\infty T_t f dt$?
Related Questions in CLOSED-GRAPH
- Why can we assume that the range of the generator of a $C_0$ semigroup is already the full space?
- What is the closure of the level set of convex function $g(x):R^n\rightarrow R,$ $\{x:g(x)<a\}$.
- Regular Set of a closed Operator
- Closed graph theorem seems to state that a closed operator has to be bounded?
- A problem on Closed Graph Theorem
- Show that Identity is closed but not continuous
- A linear operator with a closed graph that is not bounded.
- About Closed Graph Theorem for conjugate linear map
- To show Maps are closed .Closed Graph theorem
- Uniform boundedness principle and closed graph Theorem
Related Questions in CLOSED-MAP
- Contiunity and closedness of the map $F$ and $f.$
- Proving that $P:\mathbb{C}\rightarrow\mathbb{R}$, defined by $P(z)=Re(z)$ is open but is not closed.
- Is a bijective morphism between affine varieties an isomorphism?
- Proving a set is open using pre image and continuity of a function
- Is this an open/ closed set? (Pre image, continuity question)
- How to show that linear applications are closed and open
- Linear image of a closed cone. Is it closed?
- Let $S$ be a metric space, $ f: S \to \Bbb R$ continuous. Define $Z(f) = \{p \in S : f(p) = 0 \}$. Prove $Z(f)$ is closed.
- Does "unbounded" necessarily imply "goes to infinity"?
- Is $\text{SL}(2,\mathbb{R}) \to \mathbb{R}^2 \setminus \{0\},\; A \mapsto Ae_1$ a closed map?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Hint: Let $Y$ be the 'conjugate' space of $X$, i.e. its underlying set and addition is that of $X$, and scalar multiplication is defined by conjugation $\lambda\bullet x:=\bar\lambda x$. Then use the closed graph theorem.